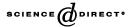


#### Available online at www.sciencedirect.com



JOURNAL OF
Approximation
Theory

Journal of Approximation Theory 127 (2004) 1-38

http://www.elsevier.com/locate/jat

# Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite–Fejér interpolation polynomials

T. Kasuga<sup>a</sup> and R. Sakai<sup>b,\*</sup>

<sup>a</sup> Department of Mathematics, Kumamoto National College of Technology, Nishigohshi-machi, Kikuchi-gun, Kumamoto 861-1102, Japan

<sup>b</sup> Department of Mathematics, Asuke Senior High School, Kawahara 5, Yagami, Asuke-cho, Higashikamo-gun, Aichi 444-2451, Japan

Received 10 December 2002; accepted in revised form 16 January 2004

Communicated by Doron S. Lubinsky

#### Abstract

Let  $Q: \mathbf{R} \to \mathbf{R}$  be even, nonnegative and continuous, Q' be continuous, Q' > 0 in  $(0, \infty)$ , and let Q'' be continuous in  $(0, \infty)$ . Furthermore, Q satisfies further conditions. We consider a certain generalized Freud-type weight  $W_{rQ}^2(x) = |x|^{2r} \exp(-2Q(x))$ . In previous paper (J. Approx. Theory 121 (2003) 13) we studied the properties of orthonormal polynomials  $\{P_n(W_{rQ}^2;x)\}_{n=0}^{\infty}$  with the generalized Freud-type weight  $W_{rQ}^2(x)$  on  $\mathbf{R}$ . In this paper we treat three themes. Firstly, we give an estimate of  $P_n(W_{rQ}^2;x)$  in the  $L_p$ -space,  $0 . Secondly, we obtain the Markov inequalities, and third we study the higher-order Hermite–Fejér interpolation polynomials based at the zeros <math>\{x_{kn}\}_{k=1}^n$  of  $P_n(W_{rQ}^2;x)$ . In Section 5 we show that our results are applicable to the study of approximation for continuous functions by the higher-order Hermite-Fejér interpolation polynomials. © 2004 Elsevier Inc. All rights reserved.

Keywords: Generalized Freud-type weights; Orthonormal polynomials; Markov inequalities; Higher-order Hermite-Fejer interpolation

E-mail addresses: kasuga@ge.knct.ac.jp (T. Kasuga), ryozi@mcc.spacetown.ne.jp (R. Sakai).

<sup>\*</sup>Corresponding author.

### 0. Introduction

Let  $Q: \mathbf{R} \to \mathbf{R}$  be even, nonnegative and continuous, Q' be continuous, Q' > 0 in  $(0, \infty)$ , and let Q'' be continuous in  $(0, \infty)$ . Furthermore, Q satisfies the following condition:

$$1 < A \le \{ (d/dx)(xQ'(x)) \} / Q'(x) \le B, \quad x \in (0, \infty), \tag{0.1}$$

where *A* and *B* are constants. Let v = 1, 2, 3, ... If v = 1, then we assume (0.1). For  $v \ge 2$  we suppose (0.1) and further that  $Q \in C^{(v+1)}(\mathbf{R})$  and

$$0 \leq x Q^{(j+1)}(x)/Q^{(j)}(x) \leq \tilde{B}, \quad j = 2, 3, \dots, \nu,$$

$$Q^{(\nu+1)}(x) \uparrow \text{(nondecreasing)}, \quad x \in (0, \infty),$$

$$(0.2)$$

where  $\tilde{B}$  is a positive constant. Then we consider generalized Freud-type weights  $W_{rO}(x)$  such that

$$W_{rQ}(x) = |x|^r \exp(-Q(x)), \quad x \in \mathbf{R}, \tag{0.3}$$

where  $r \ge 0$  except for Sections 3 and 4, but in Sections 3 and 4 we suppose r > -1/2. We say that the weight  $W_{rQ}(x)$  satisfies the condition C(v). For simplicity we write  $W_Q(x) = W_{0Q}$ . We consider the series of orthonormal polynomials  $\{P_n(W_{rQ}^2; x)\}_{n=0}^{\infty}$  with weight (0.3), where  $P_n(W_{rQ}^2; x) \in \prod_n$  and  $\prod_n$  denotes the class of polynomials of degree  $\le n$ . The orthonormal polynomials are constructed by

$$\int_{-\infty}^{\infty} P_i(W_{rQ}^2; t) P_j(W_{rQ}^2; t) W_{rQ}^2(t) dt = \delta_{ij} \text{ (Kronecker's delta)},$$
  
 $i, j = 0, 1, 2, \dots$ 

In previous paper [KaS1] we have investigated some interesting properties of orthonormal polynomials  $\{P_n(W_{rQ}^2;x)\}_{n=0}^{\infty}$ . In this paper we treat three different themes. Firstly, we give an estimate of  $P_n(W_{rQ}^2;x)$  in the  $L_p$ -space,  $0 . Secondly, we obtain the Markov inequalities, and third we study the higher-order Hermite–Fejér interpolation polynomials based at the zeros <math>\{x_{kn}\}_{k=1}^n$ ,  $-\infty < x_{nn} < \cdots < x_{2n} < x_{1n} < \infty$ , of  $P_n(W_{rQ}^2;x)$ . In Section 5 we show that our results are applicable to the study of approximation for continuous functions by the higher-order Hermite–Fejér interpolation polynomials. These are also essential to our next study [KaS2] with respect to a necessary and sufficient condition for a convergence of the higher-order Hermite–Fejér interpolation polynomials.

For  $f \in C(\mathbf{R})$  we define the higher-order Hermite–Fejér interpolation polynomial  $L_n(v, f; x)$  based at the zeros  $\{x_{kn}\}_{k=1}^n$  as follows:

$$L_n(v, f; x_{kn}) = f(x_{kn}), \quad k = 1, 2, ..., n,$$
  

$$L_n^{(i)}(v, f; x_{kn}) = 0, \quad k = 1, 2, ..., n, \quad i = 1, 2, ..., v - 1.$$
(0.4)

 $L_n(1,f;x)$  is the Lagrange interpolation polynomial, and  $L_n(2,f;x)$  is the ordinary Hermite–Fejér interpolation polynomial. The fundamental polynomials  $h_{kn}(v;x) \in \prod_{vn-1}$  for the higher-order Hermite–Fejér interpolation polynomials of

(0.4) are defined as follows:

$$h_{kn}(v;x) = l_{kn}^{v}(x) \sum_{i=0}^{v-1} e_i(v,k,n)(x-x_{kn})^i,$$

$$e_i(v,k,n) \ (0 \le i \le v-1): \text{ real coefficients},$$

$$l_{kn}(x) = \frac{P_n(W_{rQ}^2; x)}{(x - x_{kn})P_n'(W_{rQ}^2; x_{kn})}, \quad k = 1, 2, \dots, n,$$
  
$$h_{kn}(v; x_{pn}) = \delta_{kp}, \quad h_{kn}^{(i)}(v; x_{pn}) = 0, \quad p = 1, 2, \dots, n, \quad i = 1, 2, \dots, v - 1.$$

Using them, we can write as

$$L_n(v,f;x) = \sum_{k=1}^n f(x_{kn})h_{kn}(v;x).$$

Furthermore, we extend the operator  $L_n(v, f; x)$ . Let l be a nonnegative integer, and let  $v - 1 \ge l$ . For  $f \in C^{(l)}(\mathbf{R})$  we define the (l, v)-order Hermite–Fejér interpolation polynomials  $L_n(l, v, f; x) \in \prod_{v=1}^{n}$  as follows. For each k = 1, 2, ..., n,

$$L_n(l, v, f; x_{kn}) = f(x_{kn}), \quad L_n^{(j)}(l, v, f; x_{kn}) = f^{(j)}(x_{kn}), \quad j = 1, 2, ..., l,$$
  
 $L_n^{(j)}(l, v, f; x_{kn}) = 0, \quad j = l + 1, l + 2, ..., v - 1.$ 

Especially,  $L_n(0, v, f; x)$  is equal to  $L_n(v, f; x)$ , and for every polynomial  $P(x) \in \prod_{vn-1}$  we see  $L_n(v-1, v, P; x) = P(x)$ . The fundamental polynomials  $h_{skn}(v; x) \in \prod_{vn-1}, k = 1, 2, ..., n$ , of  $L_n(l, v, f; x)$  are defined by

$$h_{skn}(l, v; x) = l_{kn}^{v}(x) \sum_{i=s}^{v-1} e_{si}(v, k, n)(x - x_{kn})^{i}, \quad s = 0, 1, ..., v - 1,$$
  
 $e_{si} \ (i \le s \le v - 1)$ : real coefficients,

$$h_{skn}^{(j)}(l, v; x_{pn}) = \delta_{sj}\delta_{kp}, \quad s = 0, 1, ..., v - 1, \ p = 1, 2, ..., n, \ j = 0, 1, ..., v - 1.$$

$$(0.5)$$

Then we have

$$L_n(l, v, f; x) = \sum_{k=1}^n \sum_{s=0}^l f^{(s)}(x_{kn}) h_{skn}(l, v; x).$$

We need some definitions. The Mhaskar–Rahmanov–Saff number  $a_u$  is the unique positive root of the equation

$$u = (2/\pi) \int_0^1 a_u t Q'(a_u t) (1 - t^2)^{-1/2} dt, \quad u > 0.$$

We also consider the root  $x = q_u > 0$  of u = xQ'(x) for u > 0. Let us denote the leading coefficient of the orthonormal polynomial  $P_n(W_{rQ}^2; x)$  by  $\gamma_n$ , and then we set  $b_n = \gamma_{n-1}/\gamma_n$ . Then we have

$$a_n \sim q_n \sim b_n \sim x_{1n}$$
,  $n = 1, 2, 3, ..., [LL4, Ba, Theorem 3.5],$ 

where if for two sequences  $\{c_n\}_{n=1}^{\infty}$  and  $\{d_n\}_{n=1}^{\infty}$  there are positive numbers C, D such that  $C \leq c_n/d_n \leq D$ , then we denote this fact as  $c_n \sim d_n$ . We will use the same constant C even if it is different in the same line.

**Remark.** In previous paper [KaS1] we assumed r > -1/2 in (0.3). In this paper we need to suppose  $r \ge 0$ .

# **1. Estimate of** $||P_n(W_{rQ}^2)W_{rQ}||_{L_n(\mathbb{R})}$

In this section we suppose condition (0.1) and  $r \ge 0$  in (0.3).

**Theorem 1.1.** Given  $0 , we have, for <math>n \ge 1$ ,

$$||P_n(W_{rQ}^2)W_{rQ}||_{L_p(\mathbf{R})} \sim a_n^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ {\{\log(1+n)\}}^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$

When r = 0, the result has been obtained by Lubinsky and Moricz [LM]. We may show the following.

**Proposition 1.2.** Given  $0 , we have, for <math>n \ge 1$ ,

$$||P_n(W_{rQ}^2)W_{rQn}||_{L_p(\mathbf{R})} \sim a_n^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ {\{\log(1+n)\}}^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4, \end{cases}$$

where  $W_{rOn}(x)$  is defined as follows:

$$W_{rQn}(x) = \begin{cases} (a_n/n)^r W_Q(x) \sim (a_n/n)^r, & |x| < a_n/n, \\ W_{rQ}(x), & a_n/n \le |x|, \end{cases}$$

$$W'_{rQn}(a_n/n) = \lim_{x \to (a_n/n) + 0} W'_{rQ}(x). \tag{1.1}$$

In fact, by Kasuga and Sakai [KaS1, Theorem 1.8], we see

$$||P_n(W_{rQ}^2)W_{rQn}||_{L_n(|x| \leq a_n/n)} \leq o(a_n^{1/p-1/2}).$$

To prove the theorem we repeat the method of [LM], that is, we only check each lemma of [LM], then the theorem is shown easily. First we collect some lemmas,

which are shown in previous paper [KaS1]. From now, for simplicity we write  $P_n(x) = P_n(W_{rO}^2; x)$ .

# **Lemma 1.3.** We have the followings:

(a) For  $n \ge 1$  and  $x \in \mathbf{R}$ ,

$$|P_n(x)W_{rQn}(x)| \le Ca_n^{-1/2}/[|1-|x|/a_n|^{1/4}+n^{-1/6}]$$
  
(by Kasuga and Sakai [KaS1, Theorems 1.13, 1.14 and Lemma 2.7]).

- (b) Let 0 . There exists <math>C > 0 such that for  $n \ge 1$  and  $P \in \Pi_n$ ,  $||PW_{rQ}||_{L_p(\mathbf{R})} \le C||PW_{rQ}||_{L_p[-a_n,a_n]}$  (by Kasuga and Sakai [KaS1, Theorem 1.1]).
- (c) Let  $|x_{jn}| \le \eta a_n$ ,  $0 < \eta < 1$ . There exists a constant  $\delta > 0$  such that for  $|x x_{jn}| \le \delta a_n/n$ ,  $|P'_n(x)W_{rOn}(x)| \sim na_n^{-3/2}$  (by Kasuga and Sakai [KaS1, Corollary 1.12]).

**Proposition 1.4.** Let 0 . There exists <math>C > 0 such that for  $n \ge 2$ 

$$||P_n(W_{rQ}^2)W_{rQn}||_{L_p(\mathbf{R})} \le Ca_n^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ {\log(1+n)}^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$

**Proof.** It follows from Lemma 1.3(a) and (b) by considering the parts of  $|x| \le a_n$   $(1 - n^{-2/3})$  and  $a_n(1 - n^{-2/3}) < |x| \le a_n$ .  $\square$ 

We need to give the lower bounds.

**Lemma 1.5.** (a) *For*  $n \ge 1$ ,

 $|x_{1n}/a_n - 1| \le Cn^{-2/3}$  (by Kasuga and Sakai [KaS1, Theorem 1.3]), and uniformly for  $n \ge 3$  and  $2 \le j \le n - 1$ 

$$x_{j-1,n} - x_{j+1,n} \sim (a_n/n) [\max\{n^{-2/3}, 1 - |x_{j,n}|/a_n\}]^{-1/2}$$
 (by Kasuga and Sakai [KaS1, Theorem 1.4]).

(b) Uniformly for  $n \ge 2$ , and  $1 \le j \le n - 1$ ,

$$\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\} \sim \max\{n^{-2/3}, 1 - |x_{j+1,n}|/a_n\}$$
 (by Kasuga and Sakai [KaS1, (2.11)]).

(c) For  $n \ge 1$ ,  $1 \le k \le n$  and  $x \in \mathbb{R}$ ,

$$|P_n(x)W_{rQ}(x)| \le C(na_n^{-3/2})[\max\{n^{-2/3}, 1 - |x|/a_n\}]^{1/4}|x - x_{kn}|$$
  
(by Kasuga and Sakai [KaS1, (2.16)]).

(d) We have

$$|P_n(x)W_{rQ}(x)| \le Ca_n^{-1/2} [\max\{n^{-2/3}, 1 - |x|/a_n\}]^{-1/4}$$
  
(by Kasuga and Sakai [KaS1, Theorem 1.8]).

(e) Uniformly for  $n \ge 1$ ,  $1 \le j \le n$ 

$$|P'_n(x_{jn})W_{rQn}(x_{jn})| = |\{P_n(x)W_{rQn}(x)\}'_{x=x_{jn}}|$$

$$\sim na_n^{-3/2}[\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{1/4}$$
(by Kasuqa and Sakai [KaS1, (1.8)]).

(f) Uniformly for  $n \ge 1$ ,  $1 \le j \le n-1$  and  $x \in \mathbb{R}$ ,

$$|l_{jn}(x)| \sim (a_n^{3/2}/n) W_{rQn}(x_{jn}) [\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{-1/4} \times |P_n(x)/(x - x_{jn})| \quad (by \text{ (e)}).$$

(g) Uniformly for  $n \ge 1$ ,  $1 \le j \le n - 1$  and  $x \in \mathbb{R}$ ,

$$|l_{jn}(x)W_{rOn}^{-1}(x_{jn})W_{rOn}(x)| \le C.$$
(1.2)

(h) We have

$$\max_{|x| \leq x_{[n/2],n}} |P_n'(x)| \sim (n/a_n)^r n a_n^{-3/2} \quad (by \ Kasuga \ and \ Sakai \ [KaS1, \ (1.11)]).$$

**Proof.** We may only prove (g). First, by Kasuga and Sakai [KaS1, Lemma 2.7] we have

$$||PW_{rQ}||_{L_{\infty}(|x| \leqslant \delta a_n/n)} \leqslant C||PW_{rQ}||_{L_{\infty}(\delta a_n/n \leqslant |x| \leqslant a_n)}$$

for  $P \in \prod_n$ , where  $\delta > 0$  is small enough. Therefore, in (c) we can exchange  $W_{rQ}(x)$  for  $W_{rQn}(x)$ . Then, by (f) and (c) we have

$$\begin{aligned} |l_{jn}(x)W_{rQn}^{-1}(x_{jn})W_{rQn}(x)| \\ &\leq (a_n^{3/2}/n)[\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{-1/4} \\ &\qquad \times |P_n(x)W_{rQn}(x)/(x - x_{jn})| \\ &\leq C[(\max\{n^{-2/3}, 1 - |x|/a_n\})/(\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\})]^{1/4}. \end{aligned}$$

If for some fixed C > 0,

$$\max\{n^{-2/3}, 1 - |x|/a_n\} \le C \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\},\tag{1.3}$$

then we obtain (g). If we set

$$x_{1-s,n} = x_{1n} + sa_n n^{-2/3}; \quad x_{n+s,n} = x_{nn} - sa_n n^{-2/3}, \quad s = 1, 2,$$

then (b) implies (1.3) for  $x \in (x_{j-2,n}, x_{j+2,n})$ , with a large C. On the other hand, if (1.3) is not true, so that  $x \notin (x_{j-2,n}, x_{j+2,n})$ , then Lemma 1.3(a) and (e) of this lemma show that

$$\begin{split} &|l_{jn}(x)W_{rQn}^{-1}(x_{jn})W_{rQn}(x)|\\ &=\left|\left(\frac{P_n(x)W_{rQn}(x)}{x-x_{jn}}\right)\left(\frac{1}{P_n'(x_{jn})W_{rQn}(x_{jn})}\right)\right|\\ &\leqslant C\left(\frac{a_n^{3/2}}{n}\right)\left[\max\{n^{-2/3},1-|x_{jn}|/a_n\}\right]^{-1/4}\\ &\quad\times a_n^{-1/2}[|1-|x|/a_n|^{1/4}+n^{-1/6}]^{-1}|x_{j\pm2,n}-x_{jn}|^{-1}\\ &\leqslant C\left[\max\{n^{-2/3},1-|x_{jn}|/a_n\}\right]^{1/4}[|1-|x|/a_n|^{1/4}+n^{-1/6}]^{-1}\\ &\leqslant C\left[\max\{n^{-2/3},1-|x_{jn}|/a_n\}\right]^{1/4}[|1-|x|/a_n|^{1/4}+n^{-1/6}]^{-1}\\ &\leqslant C\left[(\max\{n^{-2/3},1-|x_{jn}|/a_n\})/(\max\{n^{-2/3},1-|x|/a_n\})\right]^{1/4}\\ &\leqslant C \end{split}$$

for C large enough, as (1.3) does not hold. So we still have (1.2). Hence (g) is true.  $\square$ 

**Lemma 1.6** (Cf. Lubinsky and Moricz [LM, p. 49]). Let  $\eta a_n \leq |x_{jn}|$ ,  $0 < \eta < 1$ ,  $x_{n+1,n} = x_{nn}(1 - n^{-2/3})$ ,  $x_{0n} = x_{1n}(1 + n^{-2/3})$ . Then, for  $x \in (x_{j+1,n}, x_{j-1,n})$ ,

$$|[(P_n W_{rQ})(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}]'|$$

$$\leq C(n/a_n)[\max\{n^{-2/3}, 1-|x_{jn}|/a_n\}]^{1/2}.$$

**Proof.** Let [z] denote the maximum integer nonexceeding z. We may assume x>0. Then we see

$$\begin{split} &[(P_n W_{rQ})(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}]' \\ &= [x^{r-[r+1]}(x^{[r+1]}P_nW_Q)(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}]' \\ &= (r-[r+1])x^{r-[r+1]-1}x^{[r+1]}(P_nW_Q)(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\} \\ &+ x^{r-[r+1]}[x^{[r+1]}(P_nW_Q)(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}]'. \end{split}$$

Here, by Lemma 1.5(g),

$$|(r - [r+1])x^{r-[r+1]-1}x^{[r+1]}(P_nW_Q)(x)/\{(x - x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}|$$

$$\leq Ca_n^{-1}|(P_nW_{rQ})(x)/\{(x - x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}| \leq Ca_n^{-1}.$$
(1.4)

Furthermore, by the Markov-Bernstein inequality [LM, Lemma 2.4],

$$|x^{r-[r+1]}[x^{[r+1]}(P_nW_Q)(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}]'|$$

$$\leq C(n/a_n)|x^{r-[r+1]}|\left\|\left\{\frac{t^{[r+1]}(P_nW_Q)(t)}{(t-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})}\right\}\right\|_{L_{\infty}(\mathbf{R})}$$

$$\times \left[\max\{n^{-2/3}, 1-|x|/a_n\}\right]^{1/2}.$$
(1.5)

For  $0 < t \le 2a_n$ ,

$$\begin{split} |x^{r-[r+1]}t^{[r+1]}(P_nW_Q)(t)/\{(t-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}| \\ &= |(t/x)^{[r+1]-r}||(P_nW_{rQ})(t)/\{(t-t_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}| \\ &\leqslant C \quad \text{(by Lemma 1.5(g))}. \end{split}$$

For  $2a_n < t$ ,

$$|x^{r-[r+1]}||t^{[r+1]}(P_nW_Q)(t)/\{(t-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}|$$

$$\leq C|x^{r-[r+1]}||(P_nW_{rQ})(t)/\{t^{1-[r+1]+r}P'_n(x_{jn})W_{rQ}(x_{jn})\}|$$

$$\leq Ca_n^{-1/2}n^{1/6}/(a_nna_n^{-3/2}n^{-1/6})$$

$$\leq Cn^{-2/3} \quad \text{(by Lemma 1.5(d) and (e))}.$$

Therefore, by (1.5) we have

$$|x^{r-[r+1]}[x^{[r+1]}(P_nW_Q)(x)/\{(x-x_{jn})P'_n(x_{jn})W_{rQ}(x_{jn})\}]'|$$

$$\leq C(n/a_n)[\max\{n^{-2/3}, 1-|x|/a_n\}]^{1/2}.$$

Here, since  $x \in (x_{i+1,n}, x_{i-1,n})$  we see by Lemma 1.5(b),

$$[\max\{n^{-2/3}, 1 - |x|/a_n\}]^{1/2} \sim [\max\{n^{-2/3}, 1 - |x_i|/a_n\}]^{1/2},$$

consequently, with (1.4) we have the lemma.  $\Box$ 

**Lemma 1.7** (Kasuga amd Sakai [KaS1, Corollary 1.12]). Let  $|x_{in}| \le \eta a_n$ ,  $0 < \eta < 1$ . (i) Let n be odd. For  $\delta a_n/n \le |x| \le x_{\lceil n/2 \rceil, n}$ ,  $\delta > 0$ ,

$$|P_n(x)| \sim (n/a_n)^r \ a_n^{-1/2},$$

and there is a constant  $\delta' > 0$  such that for  $|x| \le \delta' a_n/n$ ,

$$|P'_n(x)| \sim (n/a_n)^r n a_n^{-3/2}$$
.

Let n be even. For  $-x_{[n/2],n} + \delta a_n/n \le x \le x_{[n/2],n} - \delta a_n/n$ ,  $\delta > 0$ , we see  $|P_n(x)W_{rO}(x)| \sim a_n^{-1/2}$ .

(ii) Let 
$$x_{kn} \ge 0$$
 or  $x_{k-1,n} \le 0$ . For  $x_{kn} + \delta a_n/n \le x \le x_{k-1,n} - \delta a_n/n$ ,  $\delta > 0$ , we see  $|P_n(x)W_{rQ}(x)| \sim a_n^{-1/2}$ ,

and there is a constant  $\delta' > 0$  such that for  $x_{kn} - \delta' a_n/n \le |x| \le x_{kn} + \delta' a_n/n$ ,  $|P'_n(x)W_{rQ}(x)| \sim na_n^{-3/2}$ .

**Lemma 1.8.** There exists C > 0 such that uniformly for  $n \ge 1$ ,  $1 \le j \le n$ , and for

$$|x - x_{jn}| \le C(a_n/n) [\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{-1/2},$$

we have

$$|P_n(x)W_{rQn}(x)| \sim (na_n^{-3/2})[\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{1/4}|x - x_{jn}|.$$

**Proof.** If  $x_{jn} = 0$  (that is *n* is odd), then we have the lemma by using Lemmas 1.5(h) and 1.7(i). Therefore, we may assume  $x_{jn} \neq 0$ . We consider the polynomial

$$\tau_{jn}(x) = l_{jn}(x) W_{rOn}^{-1}(x_{jn}).$$

We have  $(\tau_{jn}W_{rQn})(x_{jn}) = 1$ , and by Lemma 1.5(g) we see  $||\tau_{jn}W_{rQn}||_{L_{\infty}(\mathbb{R})} \leq C$ , with C independent of j and n. Here let  $\eta > 0$  be fixed, and let

$$\varepsilon_n = \varepsilon(j, n) = \eta(a_n/n) [\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{-1/2}.$$
(1.6)

We use  $x_{1-s,n}$  and  $x_{n+s,n}$ , s=1,2, which are defined in the proof of Lemma 1.5(e). Now if  $\eta$  is small enough, Lemma 1.5(a) shows that uniformly for  $1 \le j \le n$ 

$$(x_{jn} - \varepsilon_n, x_{jn} + \varepsilon_n) \subset (x_{j+2,n} + \varepsilon_n, x_{j-2,n} - \varepsilon_n). \tag{1.7}$$

Let  $\eta a_n < |x_{in}|$ ,  $0 < \eta < 1$ . Then for  $x \in (x_{in} - \varepsilon_n, x_{in} + \varepsilon_n)$ , Lemma 1.6 shows that

$$|(\tau_{jn}W_{rQn})'(x)| \leq C(n/a_n)[\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{1/2}.$$

If  $t \in (x_{jn} - \varepsilon_n, x_{jn} + \varepsilon_n)$ , we have, for some  $\xi$  between t and  $x_{jn}$ ,

$$\begin{aligned} |(\tau_{jn}W_{rQn})(t)| &= |(\tau_{jn}W_{rQn})(x_{jn}) + (\tau_{jn}W_{rQn})'(\xi)(t - x_{jn})| \\ &\geqslant 1 - C(n/a_n)[\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}]^{1/2}\varepsilon_n \\ &= 1 - C\eta \geqslant 1/2 \end{aligned}$$

when  $\eta$  of (1.6) is small enough. Therefore,

$$|(\tau_{jn}W_{rQn})(t)| \sim 1, \quad t \in (x_{jn} - \varepsilon_n, \ x_{jn} + \varepsilon_n),$$
 (1.8)

and by Lemma 1.5(f) and the definition of  $\tau_{in}(x)$  we have the lemma.

Let  $|x_{jn}| \le \eta a_n$ ,  $0 < \eta < 1$ . Then by Lemma 1.3(c) we have (1.8). In fact, by Lemma 1.7, for  $t \in (x_{jn} - \varepsilon_n, x_{jn} + \varepsilon_n)$ ,

$$|(\tau_{jn}W_{rQn})(t)| = |(P_nW_{rQn})(t)/\{(t-x_{jn})P'_n(x_{jn})W_{rQn}(x_{jn})\}|$$

$$= |(P_nW_{rQn})'(\xi)/\{P'_n(x_{jn})W_{rQn}(x_{jn})\}|$$

$$\times (|\xi - x_{jn}| < |t - x_{jn}| < \delta a_n/n)$$

$$\geqslant C > 0$$

(by  $|(P_nW_{rQn})'(\xi)| \ge (1/2)|(P'_nW_{rQn})(\xi)|$  for  $\delta$  small enough). Therefore, we also obtain (1.8), and so by Lemma 1.5(f) and the definition of  $\tau_{jn}(x)$  we have the lemma.  $\square$ 

**Remark 1.9.** By (1.8), we have, for j = 2, 3, ..., n,

$$x_{j-1,n} - x_{j,n} \sim (a_n/n) \left[ \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\} \right]^{-1/2}.$$
 (1.9)

In fact, we see  $(\tau_{jn}W_{rQn})(x_{j-1,n}) = 0$ . If  $x_{j-1,n} \in (x_{jn} - \varepsilon_n, x_{jn} + \varepsilon_n)$ , then by (1.8) we see  $(\tau_{jn}W_{rQn})(x_{j-1,n}) \neq 0$ . But this contradicts. Therefore, we have  $x_{j-1,n} \notin (x_{jn} - \varepsilon_n, x_{jn} + \varepsilon_n)$ . From this and Lemma 1.5(a) we have (1.9).

**Proof of Proposition 1.2.** We fix j as  $1 \le j \le n$ . Let C be the constant in Lemma 1.8, and let us consider  $\varepsilon_n$  with  $\eta = C$  in (1.6). First let  $x_{j+2,n} > 0$  or  $x_{j-2,n} < 0$ . By (1.7) and Lemma 1.8 we have

$$\begin{split} &\int_{x_{j+2,n}}^{x_{j+2,n}} |(P_n W_{rQn})(x)|^p \, dx \\ &\geqslant C \int_{x_{jn}-\varepsilon_n}^{x_{jn}+\varepsilon_n} [(na_n^{-3/2})(\max\{n^{-2/3},1-|x_{jn}|/a_n\})^{1/4}|x-x_{jn}|]^p \, dx \\ &\geqslant C[(na_n^{-3/2})(\max\{n^{-2/3},1-|x_{jn}|/a_n\})^{1/4}]^p \varepsilon_n^{p+1} \\ &\geqslant C(a_n^{1-p/2}/n)[\max\{n^{-2/3},1-|x_{jn}|/a_n\}]^{-p/4-1/2} \\ &\geqslant Ca_n^{-p/2}(x_{j-2,n}-x_{j+2,n})[\max\{n^{-2/3},1-|x_{jn}|/a_n\}]^{-p/4} \quad \text{(by Lemma 1.5(a))} \\ &\geqslant Ca_n^{-p/2} \int_{x_{j+2,n}}^{x_{j-2,n}} [\max\{n^{-2/3},1-|t|/a_n\}]^{-p/4} \, dt \end{split}$$

in view of Lemma 1.5(b). Let  $x_{jn} = 0$ . Then by definition (1.1) and Lemma 6 we see

$$\begin{split} &\int_{x_{j+2,n}}^{x_{j-2,n}} \left| (P_n W_{rQn})(x) \right|^p dx \\ &\geqslant C \int_{x_{[n/2],n} - \varepsilon a_n/n}^{x_{[n/2],n} + \varepsilon a_n/n} \{a_n^{-1/2}\}^p dx \quad \text{(fixed } \varepsilon > 0 \text{ small enough)} \\ &\geqslant C a_n^{-p/2} \int_{x_{j+2,n}}^{x_{j-2,n}} [\max\{n^{-2/3}, 1 - |t|/a_n\}]^{-p/4} dt. \end{split}$$

In the case of  $x_{in} = 0$ , i = j - 1 or j + 1 we also have the same estimate described above. Summing, we have

$$\int_{-\infty}^{\infty} |(P_n W_{rQn})(x)|^p dx$$

$$\geq C a_n^{-p/2} \int_{x}^{x_{1n}} [\max\{n^{-2/3}, 1 - |t|/a_n\}]^{-p/4} dt$$

$$= Ca_n^{1-p/2} \int_{x_{nn}/a_n}^{x_{1n}/a_n} [\max\{n^{-2/3}, 1 - |s|\}]^{-p/4} ds$$

$$\geq Ca_n^{1-p/2} \int_{-1+Cn^{-2/3}}^{1-Cn^{-2/3}} (1 - |s|)^{-p/4} ds \quad \text{(by Lemma 1.5(a))}$$

$$\geq Ca_n^{1-p/2} \times \begin{cases} 1, & p < 4, \\ \log(1+n), & p = 4, \\ (n^{-2/3})^{1-p/4}, & p > 4. \end{cases}$$

Hence,

$$||P_n(W_{rQ}^2)W_{rQn}||_{L_p(\mathbb{R})} \ge Ca_n^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ {\{\log(1+n)\}}^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$

Therefore, from Proposition 1.4 we have Proposition 1.2.  $\Box$ 

Theorem 1.1 is shown by Proposition 1.2.

# 2. Markov inequalities

In this section we show the Markov inequalities, which are used in the next section. In this section we suppose  $r \ge 0$ . For the Freud weight  $W_Q(x) = \exp(-Q(x))$  we know the following theorems.

**Theorem A** (Levin and Lubinsky [LL5, Remarks (a) of Theorem 1.1]). Let Q satisfy (0.1) for A, B > 1, and let  $1 \le p < \infty$ . Then there exists a constant C > 0 such that for  $P \in \prod_n$ ,

$$||P'W_Q||_{L_n(\mathbf{R})} \leq C(n/a_n)||PW_Q||_{L_n(\mathbf{R})}.$$

**Theorem B** (Levin and Lubinsky [LL3, Theorem 1.1]). Let Q satisfy (0.1) for A, B>0. Then there exists a constant C>0 such that for  $P \in \prod_n$ ,

$$||P'W_{Q}||_{L_{\infty(\mathbf{R})}} \le \left\{ \int_{1}^{Cn} (1/Q^{[-1]}(s)) ds \right\} ||PW_{Q}||_{L_{\infty(\mathbf{R})}},$$

where  $Q^{[-1]}(x)$  denotes the inverse function of Q(x). Especially if  $1 < A \le B$ , then we have

$$||P'W_{rQ}||_{L_{\infty}(\mathbf{R})} \leq C(n/a_n)||PW_{rQ}||_{L_{\infty}(\mathbf{R})}.$$

In fact, we see

$$\int_{1}^{Cn} (1/Q^{[-1]}(s)) ds \sim n/a_n \quad [LL4, Lemma 5.2(f)].$$

We obtain analogies of Theorems A and B for the weight  $W_{rQ}(x)$   $(x \in \mathbb{R}, r \ge 0)$ , where Q(x) is the Freud exponent satisfying (0.1) for A, B > 1.

**Theorem 2.1.** Let Q satisfy (0.1) for A, B > 1, and let  $1 \le p \le \infty$ . Then there exists a constant C > 0 such that for  $P \in \prod_{p}$ ,

$$||P'W_{rQ}||_{L_p(\mathbf{R})} \leq C(n/a_n)||PW_{rQ}||_{L_p(\mathbf{R})}.$$

To show the theorem we use the idea of Freud and Levin–Lubinsky [LL1,LL2]. We need some simple lemmas. Let  $0 \le \delta < 2$ , and let  $1 < \lambda$  be large enough. For  $0 < \delta < 2$  we define a continuously differentiable function

$$\phi_n(\delta, \lambda; t) = \begin{cases} |t|^{\delta} & (\lambda/n \leq |t| \leq 1), \\ (\delta/2)(\lambda/n)^{\delta - 2} t^2 + (1 - \delta/2)(\lambda/n)^{\delta} & (|t| \leq \lambda/n), \end{cases}$$

and we set  $\phi_n(0, \lambda; t) = 1$ . From now, we may assume  $0 < \delta < 2$ .

**Lemma 2.2.** For  $\lambda$  large enough there exist a polynomial  $T_n(\delta, \lambda; t) \in \prod_n$ , and constants  $C_1(\lambda), C_2(\lambda), C_3(\lambda) > 0$  such that

$$C_1(\lambda) \leq |T_n(\delta, \lambda; t)/\phi_n(\delta, \lambda; t)| \leq C_2(\lambda),$$
  
$$|T'_n(\delta, \lambda; t)/\phi_n(\delta, \lambda; t)| \leq C_3(\lambda)n.$$

**Proof.** By Jackson's theorem [Ja] we see that there exist  $T_n(\delta, \lambda; t) \in \prod_n$  and a constant C independent of  $\phi_n$  such that

$$|T_n(\delta, \lambda; t) - \phi_n(\delta, \lambda; t)| \leq C(1/n)\omega(\phi'_n(\delta, \lambda); 1/n),$$
  

$$|T'_n(\delta, \lambda; t) - \phi'_n(\delta, \lambda; t)| \leq C\omega(\phi'_n(\delta, \lambda); 1/n),$$

where  $\omega(f,h)$  is the modulus of continuity for f. Here, we see

$$|\phi'_n(\delta,\lambda;t+1/n) - \phi'_n(\delta,\lambda;t)| \leq C\lambda^{\delta-2}(1/n)^{\delta-1}.$$

Therefore, we see

$$|T_n(\delta,\lambda;t)/\phi_n(\delta,\lambda;t) - 1| \leqslant C(1/\phi_n(\delta,\lambda;t))(1/n)\lambda^{\delta-2}(1/n)^{\delta-1}$$
  
$$\leqslant C[2/\{(2-\delta)\lambda^2\}] \leqslant 1/2$$

for  $\lambda$  large enough. Hence, we have

$$C_1(\lambda) \leq |T_n(\delta, \lambda; t)/\phi_n(\delta, \lambda; t)| \leq C_2(\lambda).$$

Similarly, for  $\lambda$  large enough we have

$$|T'_n(\delta,\lambda;t)/\phi_n(\delta,\lambda;t) - \phi'_n(\delta,\lambda;t)/\phi_n(\delta,\lambda;t)|$$

$$\leq C(1/\phi_n(\delta,\lambda;t))\omega(\phi'_n(\delta,\lambda);1/n)$$

$$\leq (1/2)n.$$

Here, we see

$$|\phi'_n(\delta,\lambda;t)/\phi_n(\delta,\lambda;t)| \leq \{2/(2-\delta)\}(\delta n/\lambda),$$

therefore, we have, for  $\lambda$  large enough,

$$|T'_n(\delta,\lambda;t)/\phi_n(\delta,\lambda;t)| \leq n/2 + \{(2\delta)/(2-\delta)\}(n/\lambda) \leq C_3(\lambda)n.$$

We set  $x = 2a_n t$ . We define a differentiable function

$$\Phi_{n}(\delta, \lambda; x) = (2a_{n})^{\delta} \phi_{n}(\delta, \lambda; t) 
= \begin{cases}
|x|^{\delta} & (2\lambda a_{n}/n \leq |x| \leq 2a_{n}), \\
(2a_{n})^{\delta} [(\delta/2)(2\lambda/n)^{\delta-2} \{x^{2}/(2a_{n})^{2}\} + (1 - \delta/2)(\lambda/n)^{\delta}] \\
(|x| \leq 2\lambda a_{n}/n),
\end{cases} (2.1)$$

and set

$$S_n(\delta, \lambda; x) = (2a_n)^{\delta} T_n(\delta, \lambda; t). \tag{2.2}$$

From Lemma 2.2 we see the following.

**Lemma 2.3.** Let  $x = 2a_n t$ , then for  $2\lambda a_n / n \le |x| \le 2a_n$ ,

$$\Phi_n(\delta, \lambda; x) \sim (2a_n)^{\delta} \phi_n(\delta, \lambda; t) \sim |x|^{\delta},$$

and

$$S_n(\delta, \lambda; x) \sim (2a_n)^{\delta} T_n(\delta, \lambda; t) \sim |x|^{\delta}$$

From Lemmas 2.2 and 2.3 we conclude the following.

$$|S_n(\delta, \lambda; x)/\Phi_n(\delta, \lambda; x)| = |T_n(\delta, \lambda; t)/\phi_n(\delta, \lambda; t)|.$$

We have for  $|x| \leq 2a_n$ ,

$$C_1(\lambda) \leq |S_n(\delta, \lambda; x)/\Phi_n(\delta, \lambda; x)| \leq C_2(\lambda).$$
 (2.3)

Furthermore, we see

$$|S'_n(\delta,\lambda;x)/\Phi_n(\delta,\lambda;x)|$$

$$= |(1/2a_n)T'_n(\delta,\lambda;t)/\phi_n(\delta,\lambda;t)| \leq C_3(\lambda)\{n/(2a_n)\}. \tag{2.4}$$

Let  $1 \le p \le \infty$ , and let the constants in (0.1) satisfy A, B > 1. We know  $a_{2n} < 2a_n$  (see [LL1,LL2,LL3,LL4,LL5, Proof of Lemma 5.2(c)]). So we use Lemma 2.3 for  $2\lambda a_n/n \le |x| \le 2a_n$ .

**Lemma 2.4** (Kasuga and Sakai [KaS1, Lemma 2.7]). We assume that pr + 1 > 0 if  $0 , and <math>r \ge 0$  if  $p = \infty$ . There exist constants  $\varepsilon$ , C > 0 such that for every  $P \in \prod_n$  and  $n = 0, 1, 2, \ldots$ , we have

$$||PW_{rQ}||_{L_p(|x|\leqslant \varepsilon a_n/n)}\leqslant C||PW_{rQ}||_{L_p(\varepsilon a_n/n\leqslant |x|\leqslant a_n)},$$

where 0 .

Now, we prove Theorem 2.1. We use the following modified weights. For  $0 < \delta < 2$  we define

$$W_{\delta Qn,\lambda} = \begin{cases} W_{\delta Q}(x) & (\lambda a_n/n \leq |x|), \\ W_{\delta O}(\lambda a_n/n) & (|x| \leq \lambda a_n/n), \end{cases}$$
 (2.5)

where  $\lambda > 0$  is fixed large enough.

**Proof of Theorem 2.1.** We take  $\lambda > 0$  large enough, and we consider the function  $\Phi_n(\delta, \lambda; x)$  as defined in (2.1), and the polynomial  $S_n(\delta, \lambda; x)$  as defined in (2.2). Let  $1 \le p \le \infty$ ,  $P \in \Pi_n$ .

First, let  $0 \le r = \delta < 2$ . We use Lemma 2.3. By (2.3), we have for  $|x| \le a_{2n}$ ,

$$\begin{split} |P'(x)W_{\delta Q}(x)| &\leqslant C|P'(x)\Phi_n(\delta,\lambda;x)W_Q(x)| \\ &\leqslant C|P'(x)S_n(\delta,\lambda;x)W_Q(x)| \\ &\leqslant C|\{P(x)S_n(\delta,\lambda;x)\}'W_Q(x) - P(x)S_n'(\delta,\lambda;x)W_Q(x)|. \end{split}$$

So by Lemma 2.4, with  $\varepsilon$  small enough, and by the infinite–finite range inequality, we have for  $1 \le p \le \infty$ ,

$$\begin{split} &||P'(x)W_{\delta \mathcal{Q}}(x)||_{L_{p}(\mathbf{R})} \\ &\leqslant C||P'(x)W_{\delta \mathcal{Q}}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &\leqslant C(n/a_{n})||\{P(x)S_{n}(\delta,\lambda;x)\}'W_{\mathcal{Q}}(x)||_{L_{p}(\mathbf{R})} \\ &+||P(x)S'_{n}(\delta,\lambda;x)W_{\mathcal{Q}}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &\leqslant C(n/a_{n})||P(x)S_{n}(\delta,\lambda;x)W_{\mathcal{Q}}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &+C(n/a_{n})||P(x)\Phi_{n}(\delta,\lambda;x)W_{\mathcal{Q}}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &\text{(by Lemma 2.4 and (2.4))} \\ &\leqslant C(n/a_{n})||P(x)S_{n}(\delta,\lambda;x)W_{\mathcal{Q}}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &+C(n/a_{n})||P(x)S_{n}(\delta,\lambda;x)W_{\mathcal{Q}}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &\text{(by (2.4))} \\ &\leqslant C(n/a_{n})||P(x)W_{\delta \mathcal{Q}n,2\lambda}(x)||_{L_{p}(\epsilon a_{n}/n\leqslant|x|\leqslant a_{2n})} \\ &\text{(by Lemma 2.3, and see (2.5))} \\ &\leqslant C(n/a_{n})||P(x)W_{\delta \mathcal{Q}}(x)||_{L_{p}(\mathbf{R})}. \end{split}$$

Here, we used the fact

$$W_{\delta Qn,2\lambda}(x) \sim W_{\delta Q}(x)$$
 for  $\varepsilon a_n/n \leqslant |x| \leqslant 2\lambda a_n/n$ .

Now, for the general case we set for 0 < r,

$$r = 2m + \delta$$
,  $m = 0, 1, 2, ..., 0 \le \delta < 2$ .

Then, we have by the infinite–finite range inequality and Lemma 2.4,

$$\begin{split} |P'(x)W_{rQ}(x)||_{L_{p}(\mathbf{R})} &\leqslant C||P'(x)x^{2m}W_{\delta Q}(x)||_{L_{p}(\varepsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &\leqslant C[||\{P(x)x^{2m}\}'W_{\delta Q}(x)||_{L_{p}(\varepsilon a_{n}/n\leqslant|x|\leqslant2a_{n})} \\ &+ 2m||P(x)x^{2m-1}W_{\delta Q}(x)||_{L_{p}(\varepsilon a_{n}/n\leqslant|x|\leqslant2a_{n})}] \\ &\leqslant C[(n/a_{n})||P(x)x^{2m}W_{\delta Q}(x)||_{L_{p}(\mathbf{R})} \\ &+ (\varepsilon a_{n}/n)^{-1}||P(x)x^{2m}W_{\delta Q}(x)||_{L_{p}(\mathbf{R})}] \\ &\leqslant C(n/a_{n})||P(x)W_{rQ}(x)||_{L_{p}(\mathbf{R})}, \end{split}$$

where  $C = C(\varepsilon)$ .  $\square$ 

# 3. Hermite-Fejér interpolation polynomials

Our main purpose in this section is to give estimates of the coefficients  $e_i(v,k,n)$ ,  $e_{si}(v,k,n)$ ,  $s=0,1,\ldots,v-1$ , of fundamental polynomial  $h_{kn}(v;x)$  or  $h_{kn}(l,v;x)$ . In the next section we give the proofs of theorems. We supposed r>-1/2 in (0.3). The results are important for studies of convergence or divergence of the higher order Hermite–Fejér interpolation polynomials. For the typical case  $W_m(x)=\exp(-|x|^m)$ ,  $m=1,\ldots$ , we have obtained some convergence or divergence theorems in [KS1,KS2]. We can also obtain the same result for  $L_n(v,f;x)$  with the weights (0.3). In Section 5 we will report some applications.

We define

$$\langle i \rangle = \begin{cases} 1 & (i: \text{ odd}), \\ 0 & (i: \text{ even}), \end{cases} M_n(Q; x) = |x|/a_n^2 + |Q'(x)|.$$

To get the estimate of coefficients  $e_i(v, k, n)$  we need the following theorem.

**Theorem 3.1.** Let Q satisfy the condition C(v+1). For i=1,2,...,v-1 we have

$$|(l_{kn}^{\nu})^{(i)}(x_{kn})| \le C\{M_n(Q; x_{kn}) + 1/|x_{kn}|\}^{\langle i \rangle}(n/a_n)^{i-\langle i \rangle}, \quad x_{kn} \ne 0.$$

For  $x_{kn} = 0$  we see

$$|(l_{kn}^{\nu})^{(i)}(0)| \leq C(n/a_n)^i$$
.

**Corollary 3.2.** If Q satisfies the condition C(v), for i = 1, 2, ..., v - 1,

$$|(l_{kn}^{\nu})^{(i)}(x_{kn})| \leq C(n/a_n)^i, \quad k = 1, 2, ..., n.$$

**Theorem 3.3.** Let Q satisfy the condition C(v+1). For i=1,2,...,v-1, we have  $e_0(v,k,n)=1$ .

$$|e_i(v, k, n)| \le C\{M_n(Q; x_{kn}) + 1/|x_{kn}|\}^{\langle i \rangle} (n/a_n)^{i-\langle i \rangle}, \quad x_{kn} \ne 0.$$

For  $x_{kn} = 0$  we see  $e_0(v, k, n) = 1$ ,  $|e_i(v, k, n)| \le C(n/a_n)^i$ , i = 1, 2, 3, ..., v - 1.

**Corollary 3.4.** If Q satisfies the condition C(v), for i = 1, 2, ..., v - 1,

$$e_0(v, k, n) = 1$$
,  $|e_i(v, k, n)| \le C(n/a_n)^i$ ,  $i = 1, 2, ..., v - 1$ ,  $k = 1, 2, ..., n$ .

The coefficients  $e_{si}(l, v, k, n)$  have the following estimates.

**Theorem 3.5.** If Q satisfies the condition C(v), then we have

$$e_{ss}(l, v, k, n) = 1/s!, \quad |e_{si}(l, v, k, n)| \le C(n/a_n)^{i-s},$$
  
 $i = s, s + 1, \dots, v - 1, \quad s = 0, 1, \dots, v - 1, \quad k = 1, 2, \dots, n.$ 

The following theorem is important to show a divergence theorem with respect to  $L_n(v, f; x)$ .

**Theorem 3.6** (Cf. Kanjin and Sakai [KS1, (4.16)], Sakai and Vértesi [SV]). Let Q satisfy the condition C(v+1), and let  $v \ge 1$  be odd. For j = 0, 1, 2, ..., there is a polynomial  $\Psi_j(x)$  of degree j such that  $(-1)^j \Psi_j(-\mu) > 0$  for  $\mu = 1, 3, 5, ...,$  and the following relation holds. Let  $0 < \varepsilon$  (small enough). Then we have an expression

$$e_{2s}(v,k,n) = (-1)^s \{1/(2s)!\} \Psi_s(-v) \beta_n^s(k) (n/a_n)^{2s}$$

$$\times \{1 + \eta_{kn}(v,s)\}, \quad s = 0, 1, \dots, (v-1)/2.$$
(3.1)

Here  $0 < D_1 \le \beta_n(k) \le D_2$  ( $D_1$  and  $D_2$  are independent of n and k), and  $\eta_{kn}(v,s)$  satisfies

$$|\eta_{kn}(v,s)| \le C \max(\varepsilon, \varepsilon^{A-1})$$
 (3.2)

for k with  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$ , where A is a constant defined in (0.1), and the constant C is independent of n, k and  $\varepsilon$ .

#### 4. Proofs of theorems

In this section we prove the results in Section 3. We use some results in [KaS1].

**Lemma 4.1** (Kasuga and Sakai [KaS1, Theroem 3.6]). If Q satisfies the condition C(v+1), then for i=1,2,...,v and  $x_{kn}\neq 0$  we have

$$|P_n^{(i)}(x_{kn})| \le C\{M_n(Q;x_{kn}) + 1/|x_{kn}|\}^{1-\langle i \rangle} (n/a_n)^{i-2+\langle i \rangle} |P_n'(x_{kn})|.$$

If  $x_{kn} = 0$  (that is, n odd), then

$$|P_n^{(i)}(0)| \le C(n/a_n)^{i-1}|P_n'(0)|, \quad i = 1, 2, ..., v.$$

**Proof of Theorem 3.1.** We use an induction with respect to v. Let  $x_{kn} \neq 0$ . Obviously

$$l_{kn}(x) = P_n(x)/\{(x - x_{kn})P'_n(x_{kn})\}$$

$$= \{1/P'_n(x_{kn})\}[\{P'_n(x_{kn})/1!\} + \{P''_n(x_{kn})(x - x_{kn})/2!\} + \cdots$$

$$+ \{P_n^{(n)}(x_{kn})(x - x_{kn})^{n-1}/n!\}].$$

From Lemma 4.1

$$\begin{aligned} |\{l_{kn}(x)\}_{x=x_{kn}}^{(i)}| &= |P_n^{(i+1)}(x_{kn})/\{(i+1)P_n'(x_{kn})\}| \\ &\leq C\{M_n(Q;x_{kn}) + 1/|x_{kn}|\}^{1-\langle i+1\rangle} (n/a_n)^{i-\langle i\rangle} \\ &\leq C\{M_n(Q;x_{kn}) + 1/|x_{kn}|\}^{\langle i\rangle} (n/a_n)^{i-\langle i\rangle}. \end{aligned}$$

We assume that the theorem is true for a certain  $v \ge 1$ . Then

$$\begin{aligned} |\{l_{kn}^{v}(x)\}_{x=x_{kn}}^{(i)}| &= \left|\sum_{s=0}^{i} {i \choose s} (l_{kn}^{v-1})^{(s)} (x_{kn}) (l_{kn})^{(i-s)} (x_{kn})\right| \\ &\leq C \sum_{s=0}^{i} \left\{ M_{n}(Q; x_{kn}) + 1/|x_{kn}| \right\}^{\langle s \rangle + \langle i-s \rangle} (n/a_{n})^{i-\langle s \rangle - \langle i-s \rangle} \\ &\leq C \{ M_{n}(Q; x_{kn}) + 1/|x_{kn}| \}^{\langle i \rangle} (n/a_{n})^{i-\langle i \rangle}. \end{aligned}$$

For  $x_{kn} = 0$  we can show the theorem similarly.  $\square$ 

**Proof of Corollary 3.2.** This is trivial by Theorem 3.1, because  $M_n(Q; x_{kn}) + 1/|x_{kn}| \le Cn/a_n$ .  $\square$ 

Here we can estimate the coefficients  $e_i(v, k, n)$  of the fundamental polynomials  $h_{kn}(v; x)$ .

**Proof of Theorem 3.3.** Let  $x_{kn} \neq 0$ . Obviously  $e_0(v, k, n) = 1$ . Using the properties of  $h_{kn}(v; x)$ , for i > 0,

$$e_{i}(v,k,n) \leq C \sum_{s=0}^{i-1} |e_{s}(v,k,n)| |(l_{kn}^{v})^{(i-s)}(x_{kn})|$$

$$\leq C \sum_{s=0}^{i-1} \{M_{n}(Q;x_{kn}) + 1/|x_{kn}|\}^{\langle s \rangle} (n/a_{n})^{s-\langle s \rangle}$$

$$\times \left\{ M_n(Q; x_{kn}) + 1/|x_{kn}| \right\}^{\langle i-s \rangle} (n/a_n)^{i-s-\langle i-s \rangle}$$

$$\leq C \sum_{s=0}^{i-1} \left\{ M_n(Q; x_{kn}) + 1/|x_{kn}| \right\}^{\langle s \rangle + \langle i-s \rangle} (n/a_n)^{i-\langle s \rangle - \langle i-s \rangle}$$

$$\leq C \left\{ M_n(Q; x_{kn}) + 1/|x_{kn}| \right\}^{\langle i \rangle} (n/a_n)^{i-\langle i \rangle} .$$

For  $x_{kn} = 0$  we can show the result similarly.  $\square$ 

**Proof of Corollary 3.4.** From Theorem 2.3 the corollary is trivial, because  $M_n(Q; x_{kn}) + 1/|x_{kn}| \le Cn/a_n$ .

Using the method of proving Theorem 3.3, we can show Theorem 3.5.

**Proof of Theorem 3.5.** We prove it by induction for *i*. From  $h_{skn}(l, v, x_{kn}) = 1$ , it follows that  $e_{ss}(l, v, k, n) = 1/s!$ , so the case i = s holds. By (0.5) and the fact  $h_{skn}^{(i)}(l, v, x_{kn}) = 0$ ,  $s + 1 \le i \le v - 1$ , we easily see

$$e_{is}(l, v, k, n) = -\sum_{p=s}^{i-1} \{1/(i-p)!\} e_{ps}(l, v, k, n) (l_{kn}^{v})^{(i-p)}(x_{kn}),$$
  
$$s+1 \leq i \leq v-1.$$

Since  $M_n(x_{kn}) \le C(n/a_n)$ , it follows from Corollary 3.2 that  $|(l_{kn}^v)^{(s)}(x_{kn})| \le C(a_n/n)^{-s}$  for every s, where C is independent of n and k. This inequality and the assumption of induction lead to

$$|e_{is}(l, v, k, n)| \leq C \sum_{p=s}^{i-1} |e_{ps}(l, v, k, n)| |(I_{kn}^{v})^{(i-p)}(x_{kn})|$$
  
$$\leq C \sum_{p=s}^{i-1} (n/a_n)^{p-s} (n/a_n)^{i-p} \leq C(n/a_n)^{i-s},$$

where C is independent of n and k.  $\square$ 

Next, we show Theorem 3.6. The method of proving is an analogy of [KS1], therefore we only sketch the proof simply.

We define

$$M_n^*(Q;x) = \begin{cases} |x|/a_n^2 + |Q'(x)| + 1/|x|, & x \neq 0, \\ (n/a_n), & x = 0. \end{cases}$$
(4.1)

We need some lemmas.

**Lemma 4.2** (Kasuga and Sakai [KaS1, Theorem 1.6]). We have an expression

$$P'_n(x) = A_n(x)P_{n-1}(x) - B_n(x)P_n(x) - 2r\{P_n(x)/x\}^*,$$

where

$$A_{n}(x) = 2b_{n} \int_{-\infty}^{\infty} P_{n}^{2}(t) \bar{Q}(x, t) W_{rQ}^{2}(t) dt,$$

$$B_{n}(x) = 2b_{n} \int_{-\infty}^{\infty} P_{n}(t) P_{n-1}(t) \bar{Q}(x, t) W_{rQ}^{2}(t) dt,$$

$$\{P_{n}(x)/x\}^{*} = \begin{cases} P_{n}(x)/x & (n: odd), \\ 0 & (n: even), \end{cases}$$

$$\bar{Q}(x, t) = \{Q'(t) - Q'(x)\}/(t - x).$$

We estimate  $A_n(x)$  and  $B_n(x)$ .

**Lemma 4.3** (Kasuga and Sakai [KaS1, Theorems 1.7 and 3.2]). Let Q satisfy the condition C(v+1). For  $|x| \le Da_n$ , D>0, we have the following estimates:

- (i)  $A_n(x) \sim n/a_n$ ,  $|B_n(x)| \leq Cn/a_n$ ,
- (ii) for each odd integer j,  $1 \le j \le v 1$ , we have

$$|A_n^{(j)}(x)| \le C|x|n/a_n^{j+2},$$

and for each even integer j,  $0 \le j \le v - 1$ , we have

$$|B_n^{(j)}(x)| \leq C|x|n/a_n^{j+2}$$
.

Now, we need some preliminaries. By Kasuga and Sakai [KaS1, Theorem 3.3] we have the following differential equation. For any odd integer  $n \ge 1$ 

$$P''_{n} - (Q' + A'_{n}/A_{n})P'_{n}$$

$$+ \{(b_{n}A_{n}A_{n-1}/b_{n-1}) + B_{n}B_{n-1} - (xA_{n-1}B_{n}/b_{n-1})$$

$$+ B'_{n} - (A'_{n}B_{n}/A_{n}) - 2r(A_{n-1}/b_{n-1})\}P_{n}$$

$$+ 2r(xP'_{n} - P_{n})/x^{2} + 2r(B_{n-1} - A'_{n}/A_{n})(P_{n}/x) = 0,$$

and for any even integer  $n \ge 2$ 

$$P_n'' - (Q' + A_n'/A_n)P_n' + \{(b_n A_n A_{n-1}/b_{n-1}) + B_n B_{n-1} - (x A_{n-1} B_n/b_{n-1}) + B_n' - (A_n' B_n/A_n)\}P_n + 2r(P_n'/x) + 2r B_n(P_n/x) = 0.$$

We rewrite these differential equations as follows. For any odd integer n,

$$a(x)P_n''(x) + b(x)P_n'(x) + c(x)P_n(x) + D(x) + E(x) = 0,$$
(4.2)

where

$$a(x) = A_{n}(x), \quad b(x) = -Q'(x)A_{n}(x) - A'_{n}(x),$$

$$c(x) = \{b_{n}A_{n}^{2}(x)A_{n-1}(x)/b_{n-1}\} + A_{n}(x)B_{n}(x)B_{n-1}(x)$$

$$-\{xA_{n}(x)A_{n-1}(x)B_{n}(x)/b_{n-1}\} + A_{n}(x)B'_{n}(x) - A'_{n}(x)B_{n}(x)$$

$$-2r\{A_{n}(x)A_{n-1}(x)/b_{n-1}\}$$

$$= c_{1}(x) + c_{2}(x) + c_{3}(x) + c_{4}(x) + c_{5}(x) + c_{6}(x),$$

$$(4.3)$$

$$D(x) = 2r\{A_n(x)B_{n-1}(x) - A'_n(x)\}\{P_n(x)/x\},$$
  

$$E(x) = 2rA_n(x)[\{xP'_n(x) - P_n(x)\}/x^2].$$

For any even integer n

$$a(x)P_n''(x) + b(x)P_n'(x) + c(x)P_n(x) + D(x) + E(x) = 0, (4.4)$$

where

$$a(x) = A_n(x), \quad b(x) = -Q'(x)A_n(x) - A'_n(x),$$

$$c(x) = \{b_n A_n^2(x) A_{n-1}(x) / b_{n-1}\} + A_n(x) B_n(x) B_{n-1}(x)$$

$$- \{x A_n(x) A_{n-1}(x) B_n(x) / b_{n-1}\} + A_n(x) B'_n(x) - A'_n(x) B_n(x)$$

$$= c_1(x) + c_2(x) + c_3(x) + c_4(x) + c_5(x),$$

$$(4.5)$$

$$D(x) = 2rA_n(x)B_n(x)\{P_n(x)/x\}, \quad E(x) = A_n(x)\{P'_n(x)/x\}.$$

By (4.2) and (4.4), for j = 0, 1, ..., v - 2 ( $v \ge 2$ ) we consider the following differential equations:

$$a(x)P''_n(x) + b(x)P'_n(x) + c(x)P_n(x) + D(x) + E(x) = 0, \quad j = 0,$$

$$a(x)P'''_n(x) + \{a'(x) + b(x)\}P''_n(x) + \{b'(x) + c(x)\}P'_n(x) + c'(x)P_n(x) + D'(x) + E'(x) = 0, \quad j = 1,$$

$$a(x)P_{n}^{(j+2)}(x) + \{jd'(x) + b(x)\}P_{n}^{(j+1)}(x)$$

$$+ \sum_{s=0}^{j-2} \left\{ \binom{j}{s+2} a^{(s+2)}(x) + \binom{j}{s+1} b^{(s+1)}(x) + \binom{j}{s} c^{(s)}(x) \right\} P_{n}^{(j-s)}(x)$$

$$+ \{b^{(j)}(x) + jc^{(j-1)}(x)\}P_{n}'(x) + c^{(j)}(x)P_{n}(x)$$

$$+ D^{(j)}(x) + E^{(j)}(x) = 0, \quad j = 2, 3, ..., v - 2.$$

Here, we write simply

$$A_{2}^{[0]}(x)P_{n}''(x) + A_{1}^{[0]}(x)P_{n}'(x) + A_{0}^{[0]}(x)P_{n}(x) + D^{[0]}(x) + E^{[0]}(x) = 0, \quad j = 0,$$

$$A_{3}^{[1]}(x)P_{n}'''(x) + A_{2}^{[1]}(x)P_{n}''(x) + A_{1}^{[1]}(x)P_{n}'(x) + A_{0}^{[1]}(x)P_{n}(x) + D^{[1]}(x) + E^{[1]}(x) = 0, \quad j = 1,$$

$$A_{j+2}^{[j]}(x)P_{n}^{(j+2)}(x) + A_{j+1}^{[j]}(x)P_{n}^{(j+1)}(x) + \sum_{s=0}^{j} A_{j-s}^{[j]}(x)P_{n}^{(j-s)}(x) + D^{[j]}(x) + E^{[j]}(x) = 0, \quad j = 2, 3, ..., v - 2.$$

$$(4.6)$$

Eq. (4.6) means the following differential equation.

**Lemma 4.4** (Kasuga and Sakai [KaS1, Theorem 3.5]). Let  $v \ge 2$ , and let Q satisfy the condition C(v + 1). Then for j = 0, 1, ..., v - 2 we have the following equations:

$$B_{j+2}^{[j]}(x)P_n^{(j+2)}(x) + B_{j+1}^{[j]}(x)P_n^{(j+1)}(x) + \sum_{s=0}^{j} B_{j-s}^{[j]}(x)P_n^{(j-s)}(x) = 0,$$

where, for  $x_{kn} \neq 0$ ,

$$B_{j+2}^{[j]}(x_{kn}) = A_n(x_{kn}) \sim n/a_n,$$

$$|B_{j+1}^{[j]}(x_{kn})| \leq CM_n^*(Q; x_{kn})(n/a_n),$$

$$|B_{j-s}^{[j]}(x_{kn})| \leq C[\{|x_{kn}|^{\langle s \rangle} n^3/a_n^{s+3+\langle s \rangle}\}$$

$$+ \{(n/a_n)^{s+2}/|x_{kn}|\}\}, \quad s = 0, 1, ..., j.$$

$$(4.7)$$

For any odd integer n and  $x_{kn} = 0$  we have

$$B_{j+2}^{[j]}(0) = \{1 + 2r/(j+2)\}A_n(0) \sim n/a_n, \quad |B_{j+1}^{[j]}(0)| \leq C(n/a_n)^2,$$

$$|B_{j-s}^{[j]}(0)| \leq C[\{0^{\langle s \rangle}n^3/a_n^{s+3+\langle s \rangle}\} + n^2/a_n^{s+3}]$$

$$\leq C(n^3/a_n^{s+3}), \quad s = 0, 1, \dots, j.$$

**Lemma 4.5.** Let  $M_n^*(Q;x)$  be defined by (4.1). For  $(1/\epsilon)(a_n/n) \leq |x_{kn}| \leq \epsilon a_n$  and n large enough we see

$$M_n^*(Q; x_{kn}) \leq \varepsilon^*(n/a_n), \quad \varepsilon^* = \max(\varepsilon, \varepsilon^{A-1}).$$
 (4.8)

**Proof.** By Levin and Lubinsky [LL2, Lemma 5.1(5.3)], we have  $Q'(\varepsilon a_n) \leq \varepsilon^{A-1} n/a_n$ , where A is the constant in (0.1). Therefore, we obtain (4.8).  $\square$ 

After this we write  $\varepsilon = \varepsilon^*$  simply. We need Lemma 4.1 again. Let j = 1, 2, ..., v. Then, for  $x_{kn} \neq 0$  and k = 1, 2, ..., n,

$$|P_n^{(j)}(x_{kn})| \le CM_n^*(x_{kn})^{1-\langle j\rangle} (n/a_n)^{j-2+\langle j\rangle} |P_n'(x_{kn})|, \tag{4.9}$$

where C is independent of k and n.

We use Theorem 3.1. Let r = 1, 2, ..., v - 1. Then for  $x_{kn} \neq 0$ ,

$$|(I_{kn}^{\mathsf{y}})^{(j)}(x_{kn})| \leqslant CM_n^*(x_{kn})^{\langle j \rangle}(n/a_n)^{j-\langle j \rangle} \tag{4.10}$$

for k = 1, 2, ..., n, where C is independent of k and n.

By Theorem 3.3 we see the following. Let Q satisfy the condition C(v+1). For  $i=1,2,\ldots,v-1$ ,

$$e_0(v,k,n) = 1, \quad e_i(v,k,n) \leqslant C\{M_n^*(Q;x_{kn})\}^{\langle i \rangle} (n/a_n)^{i-\langle i \rangle}. \tag{4.11}$$

Lemma 4.6. We have an expression

$$A_n(x_{kn}) = \alpha_n(k)(n/a_n), \quad k = 1, 2, ..., n,$$
 (4.12)

where  $\alpha_n(k)$  satisfies  $D_1 \leq \alpha_n(k) \leq D_2$  for positive constants  $D_1, D_2$  independing of n and k. Furthermore, for j = 0, 1, ..., v,

$$B_{j+2}^{[j]}(x_{kn}) = \alpha_n(k)(n/a_n),$$

$$|B_j^{[j]}(x_{kn})| = (b_n/b_{n-1})\alpha_n^2(k)\alpha_{n-1}(k)(n/a_n)^3\{1 + \varepsilon_n(j; x_{kn})\},$$
(4.13)

where there exists C > 0 such that

$$|\varepsilon_n(j;x_{kn})| \leqslant C\varepsilon.$$
 (4.14)

**Proof.** By Lemma 4.3 we have (4.12). From  $B_{j+2}^{[j]}(x_{kn}) = A_{j+2}^{[j]}(x_{kn}) = A_n(x_{kn})$ , the first equation in (4.13) is satisfied. By Lemma 4.4 we see that  $B_j^{[j]}(x_{kn})$  has the expression

$$B_{j}^{[j]}(x_{kn}) = {j \choose 2} a''(x_{kn}) + {j \choose 1} b'(x_{kn}) + \sum_{i=1}^{6} c_{i}(x_{kn}) + (n/a_{n})^{2}/|x_{kn}|,$$

$$x_{kn} \neq 0.$$
(4.15)

Here, by (4.3) and (4.5) we see

$$a(x) = A_n(x), \quad b(x) = -Q'(x)A_n(x) - A'_n(x),$$
  

$$c(x) = c_1(x) + c_2(x) + c_3(x) + c_4(x) + c_5(x) + c_6(x),$$

but if n is odd, then we omit  $c_6$ .

First, we deal with the main term  $c_1(x_{kn})$ . From (4.3) and (4.5) we see

$$c_1(x_{kn}) = (b_n/b_{n-1})A_n^2(x_{kn})A_{n-1}(x_{kn})$$
  
=  $(b_n/b_{n-1})\alpha_n^2(k)\alpha_{n-1}(k)(n/a_n)^3\{1 + \varepsilon_n'(j; x_{kn})\}.$ 

By Kasuga and Sakai [KaS1, Proof of Theorem 3.4] we see the following:

$$\begin{aligned} |a''(x_{kn})| &\leqslant C(n/a_n^3), \quad |b'(x_{kn})| \leqslant C(n^2/a_n^3), \\ |c_2(x_{kn})| &\leqslant C\varepsilon^2(n/a_n)^3, \quad |c_3(x_{kn})| \leqslant C\varepsilon^2(n/a_n)^3, \\ |c_4(x_{kn})| &\leqslant C(n^2/a_n^3), \quad |c_5(x_{kn})| \leqslant C\varepsilon^2(n^2/a_n^3), \\ |c_6(x_{kn})| &\leqslant C(n^2/a_n^3) \quad \text{(let } c_6 = 0 \text{ if } n \text{ is even).} \end{aligned}$$

Noting (4.15), for *n* large enough, we have (4.14)

$$|\varepsilon_n(j;x_{kn})| \leq C\varepsilon$$
.

Therefore, the proof of Lemma 4.6 is complete.  $\Box$ 

**Remark 4.7.** For  $Q(x) = |x|^{2m}$ , m = 1, 2, 3, ..., we have the following.

$$\alpha_n(k) = \alpha_n(Q) = 2m^{(4m-1)/2m} \binom{2m-2}{m-1} \beta^{2m-1},$$

where  $\beta$  is the Freud's constant (see [KS1]).

Using the above Lemma 4.6, we can estimate the lower bound for  $P_n^{(2s+1)}(x_{kn})$ ,  $2s+1 \le v$ .

**Lemma 4.8.** Let  $s = 1, 2, ..., (v - 1)/2, 0 < \varepsilon$  (small enough), and  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$ . If we set

$$P_n^{(2s+1)}(x_{kn}) = (-1)^s \beta_n^s(k) (n/a_n)^{2s} \{ 1 + \zeta_n(s; x_{kn}) \} P_n'(x_{kn}),$$
  

$$\beta_n(k) = (b_n/b_{n-1}) \alpha_n(k) \alpha_{n-1}(k),$$
(4.16)

then for n large enough,

$$|\zeta_n(s; x_{kn})| \leqslant C\varepsilon, \tag{4.17}$$

where C is independent of  $n, x_{kn}$  and  $\varepsilon$ , and may depend on s and Q.

**Remark 4.9.** From  $b_n \sim b_{n-1}$  we see that there exist positive constants  $C_1, C_2$  independent of n and k such that

$$C_1 \leqslant \beta_n(k) \leqslant C_2. \tag{4.18}$$

**Proof of Lemma 4.8.** Let j = 0, 1, ..., v. First, by (4.7) we note that

$$|B_{j+2}^{[j]}(x_{kn})| \ge C(n/a_n),$$
 (4.19)

$$|B_{i+1}^{[j]}(x_{kn})| \leqslant C\varepsilon(n/a_n)^2, \tag{4.20}$$

$$|B_{j-s}^{[j]}(x_{kn})| \le C\varepsilon^{\langle s \rangle} \{ (n^3/a_n^{3+s}) + (n/a_n)^{s+2} \}, \quad s = 1, 2, ..., j-1$$
 (4.21)

for  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$ , where C is independent of n, k and  $\varepsilon$ , and may depend on j and Q(x). By (4.8) and (4.9),

$$P_n^{(j)}(x_{kn}) \le C\varepsilon^{1-\langle j\rangle}(n/a_n)^{j-1}|P_n'(x_{kn})|, \quad j = 1, 2, ..., v$$
 (4.22)

for  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$ , where *C* is independent of *n*, *k* and  $\varepsilon$ . By (4.13) and (4.14) we see that for j = 0, 1, ..., v

$$-B_{j}^{[j]}(x_{kn})/B_{j+2}^{[j]}(x_{kn})$$

$$= (-1)\beta_{n}(k)(n/a_{n})^{2}\{1 + \rho_{n}(j; x_{kn})\}, |\rho_{n}(j; x_{kn})| \leq C\varepsilon,$$
(4.23)

for  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$ , where C is independent of n, k and  $\varepsilon$ .

Now, we show (4.16) and (4.17) by induction on s. Let s=1. It follows from Lemma 4.4 that

$$P_n^{(3)}(x_{kn}) = -\{B_2^{[1]}(x_{kn})/B_3^{[1]}(x_{kn})\}P_n''(x_{kn}) - \{B_1^{[1]}(x_{kn})/B_3^{[1]}(x_{kn})\}P_n'(x_{kn}).$$

By (4.18), (4.19) and (4.21), the first term on the right-hand side of the above equality is bounded by  $C\varepsilon^2(n/a_n)^2|P_n'(x_{kn})|$ . The second term is estimated by (4.22). These lead to (4.16), (4.17) with s=1

$$P_n^{(3)}(x_{kn}) = \{(-1)\beta_n(k)(1+\rho_{kn}) + C\varepsilon(a_n/n)\}(n/a_n)^2 P_n'(x_{kn})$$
  
=  $(-1)\{\beta_n(k)(1+\zeta_n(1;x_{kn}))\}(n/a_n)^2 P_n'(x_{kn}), \quad |\zeta_n(1;x_{kn})| \le C\varepsilon$ 

for  $\varepsilon$  small enough and *n* large enough.

We suppose (4.16) and (4.17) until  $s - 1 (\ge 1)$  holds. From the expression of Lemma 4.4 it follows that

$$P_n^{(2s+1)} = -(B_{2s}/B_{2s+1})P_n^{(2s)} - (B_{2s-1}/B_{2s+1})P_n^{(2s-1)} - (B_{2s-2}/B_{2s+1})P_n^{(2s-2)} - \dots - (B_1/B_{2s+1})P_n^{(1)},$$

$$(4.24)$$

where  $B_j$  and  $P_n^{(j)}$  stand for  $B_j^{[2s-1]}(x_{kn})$  and  $P_n^{(j)}(x_{kn})$ , respectively. By the assumption of induction and (4.22), we see that the second term on the right-hand side of (4.23) has an estimate

$$-(B_{2s-1}/B_{2s+1})P_n^{(2s-1)}(x_{kn})$$

$$= (-1)\beta_n(k)(n/a_n)^2 \{1 + \rho_n(2s-1; x_{kn})\}(-1)^{s-1}\beta_n^{s-1}(k)(n/a_n)^{2(s-1)}$$

$$\times \{1 + \zeta_n(s-1; x_{kn})\}P_n'(x_{kn})$$

$$= (-1)^s\beta_n^s(k)(n/a_n)^{2s} \{1 + \rho_n'(2s+1; x_{kn})\}P_n'(x_{kn}),$$

where

$$\rho'_n(2s+1;x_{kn}) = \rho_n(2s-1;x_{kn}) + \zeta_n(s-1;x_{kn}) + \rho_n(2s-1;x_{kn})\zeta_n(s-1;x_{kn}).$$

Then we have  $|\rho'_n(2s+1;x_{kn})| \le C\varepsilon$ . Combining (4.18)–(4.21), we easily see that the other terms on the right-hand side of (4.23) are bounded by  $C(n/a_n)^{2s}(\varepsilon^2+a_n^{-2})|P'_n(x_{kn})|$ . Now, if we take n large enough as  $a_n^{-1} < \varepsilon$ , then we obtain (4.16) and (4.17)

$$P_n^{(2s+1)}(x_{kn}) = (-1)^s \beta_n^s(k) (n/a_n)^{2s} \{ 1 + \zeta_n(s; x_{kn}) \} P_n'(x_{kn}),$$
  
$$|\zeta_n(1; x_{kn})| \leq C\varepsilon,$$

where 
$$\zeta_n(s; x_{kn}) = \rho'_n(2s+1; x_{kn})\zeta'_n(s; x_{kn})$$
.  $\square$ 

We need more refined estimate of  $(l_{kn}^{\nu})^{(2j)}(x_{kn})$ . Let  $\phi_j(1) = (2j+1)^{-1}$ ,  $j=0,1,2,\ldots$ . Let  $0<\varepsilon<1$ , and suppose  $(1/\varepsilon)(a_n/n)\leqslant |x_{kn}|\leqslant \varepsilon a_n$ . From  $x_{kn}\neq 0$ , we see

$$l_{kn}(x) = P_n(x)/\{(x - x_{kn})P'_n(x_{kn})\}$$
  
=  $\{1/P'_n(x_{kn})\} \sum_{i=1}^n \{P_n^{(i)}(x_{kn})/i!\}(x - x_{kn})^{i-1}.$ 

So we have

$$l_{kn}^{(2j)}(x_{kn}) = P_n^{(2j+1)}(x_{kn}) / \{(2j+1)P_n'(x_{kn})\}.$$

Therefore, from this and Lemma 4.8, we have

$$l_{kn}^{(2j)}(x_{kn}) = (-1)^{j} \phi_{j}(1) \beta_{n}^{j}(k) (n/a_{n})^{2j} \{ 1 + \zeta_{n}(1, j; x_{kn}) \},$$
  

$$|\zeta_{n}(1, j; x_{kn})| \leq C\varepsilon, \quad j = 0, 1, \dots, v,$$
(4.25)

where  $\zeta_n(1,j;x_{kn}) = \zeta_n(j;x_{kn})$  or  $j \ge 1$ ,  $\zeta_n(1,0;x_{kn}) = 0$ , and C is independent of n,  $x_{kn}$  and  $\varepsilon$ , and may depend on j and Q. By induction on v, we can estimate  $\binom{v}{kn}^{(2j)}(x_{kn})$ .

**Lemma 4.10** (Cf. Kasuga and Sakai [KS1, Lemma 10]). Let  $0 < \varepsilon < 1$ , and suppose  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$ . Then, for v = 1, 2, 3, ..., there exists uniquely a sequence  $\{\phi_j(v)\}_{j=0}^{\infty}$  of positive numbers and  $\zeta_n(v,j;x_{kn})$  such that

$$(I_{kn}^{\nu})^{(2j)}(x_{kn}) = (-1)^{j} \phi_{j}(\nu) \beta_{n}^{j}(k) (n/a_{n})^{2j} \{ 1 + \zeta_{n}(\nu, j; x_{kn}) \},$$

$$|\zeta_{n}(\nu, j; x_{kn})| \leq C\varepsilon, \quad j = 0, 1, \dots, \nu,$$
(4.26)

where C is independent of n,  $x_{kn}$  and  $\varepsilon$ , and may depend on v, j and Q.

**Proof.** The case of v = 1 follows from (4.24). Suppose that for the case of v - 1 the lemma holds. We have

$$(I_{kn}^{\nu})^{(2j)}(x_{kn}) = \sum_{i=0}^{2j} {2j \choose i} (I_{kn}^{\nu-1})^{(i)}(x_{kn}) I_{kn}^{(2j-i)}(x_{kn})$$

$$= \sum_{r=0}^{j} {2j \choose 2r} (I_{kn}^{\nu-1})^{(2r)}(x_{kn}) I_{kn}^{(2j-2r)}(x_{kn})$$

$$+ \sum_{r=1}^{j} {2j \choose 2r-1} (I_{kn}^{\nu-1})^{(2r-1)}(x_{kn}) I_{kn}^{(2j-2r+1)}(x_{kn}).$$

It follows from (4.8) and (4.10) that

$$|(l_{kn}^{\nu})^{(2t-1)}(x_{kn})| \le C\varepsilon(n/a_n)^{2t-1}, \quad t = 1, 2, 3, ...,$$

therefore, the second sum on the right-hand side of the above equality is bounded by  $C\varepsilon(n/a_n)^{2t}$ . By (4.20) and the assumption of induction, the first sum  $\sum_{i=0}^{j}$  is estimated as

$$\sum_{r=0}^{j} = \sum_{r=0}^{j} {2j \choose 2r} (-1)^{r} \phi_{r}(v-1) \beta_{n}^{r}(k) (n/a_{n})^{2r} \{1 + \zeta_{n}(v-1,j;x_{kn})\}$$

$$\times (-1)^{j-r} \phi_{j-r}(1) \beta_{n}^{j-r}(k) (n/a_{n})^{2(j-r)} \{1 + \zeta_{n}(1,j-r;x_{kn})\}$$

$$= \sum_{r=0}^{j} \{1/(2j-2r+1)\} {2j \choose 2r} (-1)^{j} \phi_{r}(v-1) \beta_{n}^{j}(k) (n/a_{n})^{2j}$$

$$\times \{1 + \tau_{n}(v,j,r;x_{kn})\},$$

where

$$\tau_n(v, j, r; x_{kn}) = \zeta_n(v - 1, j; x_{kn}) + \zeta_n(1, j - r; x_{kn}) + \zeta_n(v - 1, j; x_{kn})\zeta_n(1, j - r; x_{kn}),$$

$$|\tau_n(v,j,r;x_{kn})| \leq C\varepsilon.$$

If we put, for j = 0, 1, 2, ...,

$$\phi_{j}(v) = \sum_{r=0}^{j} \left\{ \frac{1}{(2j-2r+1)} \left\{ \frac{2j}{2r} \right\} \phi_{r}(v-1), \right.$$

$$\zeta_{n}(v,j;x_{kn}) = \sum_{r=0}^{j} \left\{ \frac{1}{(2j-2r+1)} \left\{ \frac{2j}{2r} \right\} \phi_{r}(v-1) \tau_{n}(v,j,r;x_{kn}), \right.$$

$$(4.27)$$

then  $\{\phi_j(v)\}_{j=0}^{\infty}$  and  $\{\zeta_n(v,j,r;x_{kn})\}_{j=0}^{\infty}$  satisfy the required conditions (4.25).  $\square$ 

We rewrite relation (4.26) in the form

$$\phi_0(v) = 1, \quad v = 1, 2, 3, \dots,$$

$$\phi_j(v) - \phi_j(v-1) = \{1/(2j+1)\} \sum_{r=0}^{j-1} {2j+1 \choose 2r} \phi_r(v-1),$$
$$j = 1, 2, 3, \dots, v = 2, 3, 4, \dots.$$

Now, for every j we will introduce an auxiliary polynomial determined by  $\{\phi_j(v)\}_{j=1}^{\infty}$  as the following lemma.

**Lemma 4.11** (Kanjin and Sakai [KS1, Lemma 11]). (i) For j = 0, 1, 2, ..., there exists a unique polynomial  $\Psi_j(y)$  of degree j such that  $\Psi_j(v) = \phi_j(v), v = 1, 2, 3, ...$ .

(ii) 
$$\Psi_0(y) = 1$$
, and  $\Psi_j(0) = 0$ ,  $j = 1, 2, 3, ...$ 

Since  $\Psi_j(y)$  is a polynomial of degree j, we can replace  $\phi_j(v)$  in (4.27) with  $\Psi_j(y)$ , that is,

$$\Psi_j(y) = \sum_{r=0}^{j} \left\{ 1/(2j - 2r + 1) \right\} {2j \choose 2r} \Psi_r(y - 1), \quad j = 0, 1, 2, \dots,$$
 (4.28)

for an arbitrary y and j = 0, 1, 2, .... We use the notation  $F_{kn}(x, y) = \{l_{kn}(x)\}^y$  which coincides with  $l_{kn}^y(x)$  if y is an integer. Since  $l_{kn}(x_{kn}) = 1$ , we have  $F_{kn}(x, t) > 0$  for x in a neighbourhood of  $x_{kn}$  and an arbitrary real number y.

We will show that  $(\partial/\partial x)^j F_{kn}(x_{kn}, y)$  is a polynomial of degree at most j with respect to y for  $j=0,1,2,\ldots$ , where  $(\partial/\partial x)^j F_{kn}(x_{kn},y)$  is the jth partial derivative of  $F_{kn}(x,y)$  with respect to x at  $(x_{kn},y)$ . We prove these facts by induction on j. For j=0 it is trivial. Suppose that it holds for  $j\geqslant 0$ . To simplify the notation, let  $F(x)=F_{kn}(x,y)$  and  $I(x)=I_{kn}(x)$  for a fixed y. Then F'(x)I(x)=yI'(x)F(x). By Leibniz's rule, we easily see that

$$F^{(j+1)}(x_{kn}) = -\sum_{s=0}^{j-1} {j \choose s} F^{(s+1)}(x_{kn}) l^{(j-s)}(x_{kn})$$
  
+  $y \sum_{s=0}^{j} {j \choose s} l^{(s+1)}(x_{kn}) F^{(j-s)}(x_{kn}),$ 

which shows that  $F^{(j+1)}(x_{kn})$  is a polynomial of degree at most j+1 with respect to y.

Let  $P_{kn}^{[j]}(y)$  be defined by

$$(\partial/\partial x)^{2j}F_{kn}(x_{kn},y) = (-1)^{j}\beta_{n}^{j}(k)(n/a_{n})^{2j}\Psi_{j}(y) + P_{kn}^{[j]}(y), \quad j = 0, 1, 2, \dots.$$

Then  $P_{kn}^{[j]}(y)$  is a polynomial of degree at most 2j. We have the following. By Lemma 4.10 we have the following.

**Lemma 4.12** (Kanjin and Sakai [KS1, Lemma 12]). Let j = 0, 1, 2, ..., and let M be a positive constant. If  $(1/\epsilon)(a_n/n) \le |x_{kn}| \le \epsilon a_n$ ,  $0 < \epsilon$  (small enough), and  $|y| \le M$ , then,

- (i)  $|(\partial/\partial y)^s P_{kn}^{[j]}(y)| \leq C\varepsilon (n/a_n)^{2j}$ , s = 0, 1,
- (ii)  $|(\partial/\partial x)^{2j+1}F_{kn}(x_{kn},y)| \leq C\varepsilon(n/a_n)^{2j+1}$ , where C is independent of n, k and  $\varepsilon$ , and may depend on j, M and Q.

By (i) of the above Lemma 4.12, we can prove the following lemma which plays an essential role in estimating the lower bound of  $e_{\nu-1}(\nu, k, n)$ .

**Lemma 4.13** (Cf. Kanjin and Sakai [KS1, Lemma 13]). If y < 0, then  $\Psi_i(y) \neq 0$  for  $j = 0, 1, 2, \dots$ 

**Proof.** Since  $\Psi_0(y) = 1$ , we may assume  $j \ge 1$ . Since  $\Psi_i(0) = 0$ ,  $\Psi_i(y)$  has an expression

$$\Psi_j(y) = \sum_{i=1}^j (-1)^{j-i} c_i(j) y^i, \quad j = 1, 2, 3, \dots$$
 (4.30)

Then it is enough to show that  $c_i(j) > 0$ , j = 1, 2, 3, ... Because if y = -u, u > 0, then  $\Psi_j(-u) = (-1)^j \sum_{i=1}^j c_i(j) u^i \neq 0$ . We will first show that  $c_1(j) > 0, \ j = 1, 2, 3, \dots$ . It follows from (4.25) and

 $(-1)^{j-1}c_1(j) = (d/dy)\Psi_j(0)$  that

$$-\beta_n^{j}(k)(n/a_n)^{2j}c_1(j) = (d/dy)\{(\partial/\partial x)^{2j}F_{kn}(x_{kn},y) - P_{kn}^{[j]}(y)\}_{y=0}$$

(see (4.29)). We have

$$(d/dy)\{(\hat{o}/\hat{o}x)^{2j}F_{kn}(x_{kn},y)\}_{y=0} = (d/dx)^{2j}\{(\hat{o}/\hat{o}y)F_{kn}(x,0)\}_{x=x_{kn}}$$

$$= (d/dx)^{2j}\log\{|l_{kn}(x)|\}_{x=x_{kn}}$$

$$= -(2j-1)!\sum_{s\neq k}\{1/(x_{kn}-x_{sn})^{2j}\}.$$

Here, we used the expression  $l_{kn}(x) = P_n(x)/\{(x-x_{kn})P'_n(x_{kn})\}$ . Therefore, we have

$$c_1(j) = \beta_n^{-j}(k)(n/a_n)^{-2j} \left[ (2j-1)! \sum_{s \neq k} \left\{ 1/(x_{kn} - x_{sn})^{2j} \right\} + (d/dy) P_{kn}^{[j]}(0) \right].$$

From Lemma 4.12(i) it follows that  $|(d/dy)P_{kn}^{[j]}(0)| \le C\varepsilon(n/a_n)^{2j}$  for a certain number k as  $(1/\varepsilon)(n/a_n) \le |x_{kn}| \le \varepsilon a_n$ , where C is a positive constant independent of n. From this and  $x_{k-1,n} - x_{k+1,n} \sim (n/a_n)$  (see [KaS1, Theorem 1.4]), we have

$$c_1(j) \geqslant \beta_n^{-j}(k)(n/a_n)^{-2j} \{ C(2j-1)!(n/a_n)^{2j} - C\varepsilon(n/a_n)^{2j} \}$$
  
$$\geqslant \{ C(2j-1)!\beta_n^{-j}(k) - C\varepsilon \}.$$

Letting  $\varepsilon \to 0$ , we see that  $c_1(i) > 0$ .

Next, we treat the other coefficients. We see that

$$(l_{kn}^{2\mu})^{(2j+2)}(x_{kn})$$

$$= \sum_{r=0}^{j+1} {2j+2 \choose 2r} (l_{kn}^{\mu})^{(2r)}(x_{kn}) (l_{kn}^{\mu})^{(2j+2-2r)}(x_{kn})$$

$$+ \sum_{r=1}^{j+1} {2j+2 \choose 2r-1} (l_{kn}^{\mu})^{(2r-1)}(x_{kn}) (l_{kn}^{\mu})^{(2j+3-2r)}(x_{kn}), \quad \mu = 1, 2, 3, \dots.$$

From (4.25), it follows that the leading term on the left-hand side of the equation is

$$(-1)^{j+1}\phi_{j+1}(2\mu)\beta_n^{j+1}(k)(n/a_n)^{2(j+1)}$$
.

The leading term of the first sum on the right-hand side is

$$\sum_{r=0}^{j+1} {2j+2 \choose 2r} (-1)^{j+1} \phi_r(\mu) \phi_{j+1-r}(\mu) \beta_n^{j+1}(k) (n/a_n)^{2(j+1)}.$$

Since  $|(l_{kn}^{\mu})^{(2t-1)}(x_{kn})| \le C\varepsilon(n/a_n)^{2t-1}, t = 1, 2, ...$ . Therefore, we have

$$\phi_{j+1}(2\mu) = \sum_{r=0}^{j+1} {2j+2 \choose 2r} \phi_r(\mu) \phi_{j+1-r}(\mu)$$

as  $\varepsilon \to 0$ , and therefore,

$$\phi_{j+1}(2\mu) - 2\phi_{j+1}(\mu) = \sum_{r=1}^{j} {2j+2 \choose 2r} \phi_r(\mu)\phi_{j+1-r}(\mu), \quad \mu = 1, 2, 3, \dots$$

This leads to

$$\Psi_{j+1}(2y) - 2\Psi_{j+1}(y) = \sum_{r=1}^{j} {2j+2 \choose 2r} \Psi_r(y) \Psi_{j+1-r}(y). \tag{4.31}$$

We replace

$$\Psi_{j+1}(y) = \sum_{i=1}^{j+1} (-1)^{j+1-i} c_i(j+1) y^i.$$

By (4.31) we have

$$\sum_{i=1}^{j+1} (-1)^{j+1-i} (2^i - 2) c_i (j+1) y^i = \sum_{r=1}^{j} {2j+2 \choose 2r} \Psi_r(y) \Psi_{j+1-r}(y).$$

If we assume  $c_i(j) > 0$ , i = 1, 2, ..., j, then we see that the right-hand side of the equation is a polynomial of degree j + 1, whose coefficients are alternating. Therefore, we have  $(2^i - 2)c_i(j + 1) > 0$ , which implies  $c_i(j + 1) > 0$ , i = 2, ..., j + 1. This completes the proof since we have already obtained  $c_1(j) > 0$ , j = 1, 2, 3, ...

**Proof of Theorem 3.6.** Let  $0 < \varepsilon$  (small enough). For v = 1, 2, 3, ..., we define  $\eta_{kn}(v; s)$  by (1.1), that is

$$e_{2s}(v,k,n) = (-1)^s \{1/(2s)!\} \Psi_s(-v) \beta_n^s(k) (n/a_n)^{2s} \{1 + \eta_{kn}(v;s)\}.$$

Then, we will show  $|\eta_{kn}(v;s)| \le C\varepsilon$  for k and  $(1/\varepsilon)(a_n/n) \le |x_{kn}| \le \varepsilon a_n$  and s = 0, 1, 2, ..., (v-1)/2, where C is independent of n, k and  $\varepsilon$ , and may depend on v, s and O.

We prove (3.1) and (3.2) by induction on s. By the definition of  $h_{kn}(v;x)$ , we have

$$e_0(v,k,n)=1,$$

$$e_{j}(v,k,n) = -(1/j!) \sum_{r=0}^{j-1} \{ j!/(j-r)! \}$$

$$\times e_{r}(v,k,n) (l_{kn}^{v})^{(j-r)}(x_{kn}), \quad j=1,2,...,v-1.$$
(4.32)

By  $e_0(v,k,n) = 1$  and  $\Psi_0(v) = 1$ , (3.1) holds for s = 0. From (4.32), we write  $e_{2s}(v,k,n)$  in the form

$$\begin{split} e_{2s}(v,k,n) \\ &= -\{1/(2s)!\} \left[ \sum_{r=0}^{s-1} \{(2s)!/(2s-2r)!\} e_{2r}(v,k,n) (l_{kn}^{v})^{(2s-2r)}(x_{kn}) \right. \\ &+ \left. \sum_{r=1}^{s} \{(2s)!/(2s-2r+1)!\} e_{2r-1}(v,k,n) (l_{kn}^{v})^{(2s-2r+1)}(x_{kn}) \right]. \end{split}$$

We have  $|(l_{kn}^v)^{(2s-2r+1)}(x_{kn})| \le C\varepsilon(n/a_n)^{2s-2r+1}$  by (4.8), (4.10) and  $|e_{2r-1}(v,k,n)| \le C\varepsilon(n/a_n)^{2r-1}$  (see (4.8) and (4.11)). The second sum  $\sum_{r=1}^s$  is bounded by  $C\varepsilon^2(n/a_n)^{2s}$ . For the first sum  $\sum_{r=0}^{s-1}$  we have the following. By (3.1), (3.2) and Lemma 4.10,

$$\begin{split} \sum_{r=0}^{s-1} &= \sum_{r=0}^{s-1} (-1)^r \{ (2s)!/(2s-2r)! \} \{ 1/(2r)! \} \Psi_r(-v) \beta_n^r(k) (n/a_n)^{2r} \\ &\times \{ 1 + \eta_{kn}(v,r) \} (-1)^{s-r} \phi_{s-r}(v) \beta_n^{s-r}(k) (n/a_n)^{2(s-r)} \\ &\times \{ 1 + \zeta_{kn}(v,s-r,x_{kn}) \} \\ &= (-1)^s \beta_n^s(k) (n/a_n)^{2s} \sum_{r=0}^{s-1} \binom{2s}{2r} \Psi_r(-v) \phi_{s-r}(v) (1 + \lambda_{kn}(r,s)), \end{split}$$

where  $\lambda_{kn}(r,s) = \eta_{kn}(v,r) + \zeta_{kn}(v,s-r,x_{kn}) + \zeta_{kn}(v,s-r,x_{kn})\eta_{kn}(v,r)$ . We set

$$\eta_{kn}(v,s) = \sum_{r=0}^{s-1} {2s \choose 2r} \Psi_r(-v) \phi_{s-r}(v) \lambda_{kn}(r,s),$$

then by  $|\lambda_{kn}(r,s)| \le C\varepsilon$  we see  $|\eta_{kn}(v,s)| \le C\varepsilon$ . Therefore, by Lemma 4.10 and the assumption of induction, it is enough to show

$$\sum_{r=0}^{s} {2s \choose 2r} \Psi_r(-v) \phi_{s-r}(v) = 0, \quad s = 1, 2, 3, \dots, \quad v = 1, 2, 3, \dots$$

Let  $C_s(y) = \sum_{r=0}^{s} {2s \choose 2r} \Psi_r(-y) \Psi_{s-r}(y)$ . It suffices to show that  $C_s(v) = 0$ , s = 1, 2, 3, ..., v = 1, 2, 3, .... We have

$$0 = (l_{kn}^{-1+1})^{(2s)}(x_{kn}) = \sum_{i=0}^{2s} {2s \choose i} (l_{kn}^{-1})^{(i)}(x_{kn}) l_{kn}^{(2s-i)}(x_{kn})$$

$$= \sum_{r=0}^{s} {2s \choose 2r} (\hat{o}/\hat{o}x)^{2r} F_{kn}(x_{kn}, -1) l_{kn}^{(2s-2r)}(x_{kn})$$

$$+ \sum_{r=0}^{s-1} {2s \choose 2r+1} (\hat{o}/\hat{o}x)^{2r+1} F_{kn}(x_{kn}, -1) l_{kn}^{(2s-2r-1)}(x_{kn})$$

for every s. By (4.25), (4.28) and Lemma 4.12(i), we see that the first sum  $\sum_{r=0}^{s}$  has the form

$$\sum_{r=0}^{s} = (-1)^{s} \beta_{n}^{s}(k) (n/a_{n})^{2s} \sum_{r=0}^{s} {2s \choose 2r} \Psi_{r}(-1) \phi_{s-r}(1) + \xi_{n}(n/a_{n})^{2s},$$

where  $|\xi_n| \le C\varepsilon$ . By (4.10) and Lemma 4.12(ii), the second sum  $\sum_{r=0}^{s-1}$  is bounded by  $C\varepsilon(n/a_n)^{2s}$ . Therefore, letting  $\varepsilon \to 0$ , we see that

$$0 = \sum_{r=0}^{s} {2s \choose 2r} \Psi_r(-1) \Psi_{s-r}(1) = C_s(1)$$

for every s. Suppose  $C_s(v) = 0$  for every s. We will show that  $C_s(v+1) = 0$  for every s. Using (4.27) and changing the order of summation, we have

$$\begin{split} &C_s(v+1) \\ &= \sum_{r=0}^s \binom{2s}{2r} \Psi_r(-v-1) \sum_{p=0}^{s-r} \left\{ 1/(2s-2r-2p+1) \right\} \binom{2s-2r}{2p} \Psi_p(v) \\ &= \sum_{p=0}^s \left[ \sum_{r=0}^{s-p} \left\{ 1/(2s-2r-2p+1) \right\} \binom{2s-2r}{2p} \binom{2s}{2r} \Psi_r(-v-1) \right] \Psi_p(v). \end{split}$$

By the relation  $\binom{2s-2r}{2p}\binom{2s}{2r} = \binom{2s}{2p}\binom{2s-2p}{2r}$  and (4.27), we have

$$\sum_{r=0}^{s-p} \left\{ 1/(2s - 2r - 2p + 1) \right\} {2s - 2r \choose 2p} {2s \choose 2r} \Psi_r(-v - 1)$$

$$= {2s \choose 2p} \Psi_{s-p}(-v),$$

with leading to  $C_s(\nu+1) = C_s(-\nu)$ . Since we easily see  $C_s(-\nu) = C_s(\nu)$ , we finish proving. The positiveness  $(-1)^j \Psi_j(-\nu) > 0$ ,  $j = 0, 1, 2, ..., \nu = 1, 2, 3, ...$ , are easily obtained by (4.30).  $\square$ 

# 5. Applications

In this section we report some interesting applications of results in the previous sections. We suppose again  $r \ge 0$  in (0.3). We define the moduli of continuity of  $f \in C(\mathbf{R})$  by

$$\omega(f, [a, b]; h) = \max_{|x_1 - x_2| \le h, \ x_1, x_2 \in [a, b]} |f(x_1) - f(x_2)|, \quad h > 0$$

and

$$\omega(f, \mathbf{R}; h) = \max_{|x_1 - x_2| \le h, \ x_1, x_2 \in \mathbf{R}} |f(x_1) - f(x_2)|, \quad h > 0.$$

**Theorem 5.1.** Let Q satisfy the condition C(v), and let v = 1, 2, 3, ... If  $f \in C(\mathbf{R})$  is uniformly continuous function on  $\mathbf{R}$ , then we have

$$\sup_{x \in \mathbf{R}} W_{rQ}^{\nu}(x) (1+|x|)^{-\nu\eta/6} |L_n(\nu, f; x) - f(x)|$$

$$\leq C \log(1+n)\omega(f, \mathbf{R}; a_n/n),$$

where

$$\sup_{0 \leqslant u < \infty} uQ'(u)/Q(u) = \eta_Q, \quad \eta_Q \leqslant \eta.$$

**Remark 5.2.** If  $\lim_{n\to\infty} \log(1+n)\omega(f,\mathbf{R};a_n/n) = 0$  (for example,  $f \in \operatorname{Lip}_{\alpha}(\mathbf{R}) = \{f; |f(x+h)-f(x)| \le C|h|^{\alpha}\}$ ), then

$$\lim_{n \to \infty} \sup_{x \in \mathbf{R}} W_{rQ}^{\nu}(x) (1 + |x|)^{-\nu\eta/6} |L_n(\nu, f; x) - f(x)| = 0.$$

**Theorem 5.3** (Cf. Kanjin and Sakai [KS1]). Let  $v \ge 1$  be an odd integer, and let Q satisfy the condition C(v+1). Then there is a function  $f \in \mathbf{C}(\mathbf{R})$  such that for any fixed constant M > 0,

$$\limsup_{n\to\infty} \max_{-M\leqslant x\leqslant M} |L_n(v,f;x)| = \infty.$$

**Theorem 5.4** (Cf. Kanjin and Sakai [KS2]). Let Q satisfy the condition C(v), and let I be any compact interval.

(i) Let 
$$v-1=l$$
, and  $N\geqslant l$ . If  $f\in C^{(N)}(\mathbf{R})$  satisfies 
$$\lim_{h\to 0}\omega(f^{(N)},\mathbf{R};h)\log(h)=0,$$

then we have

$$\lim_{n \to \infty} \max_{x \in I} W_{rQ}^{v}(x) |L_{n}^{(j)}(v-1, v, f; x) - f^{(j)}(x)| = 0, \quad 0 \le j \le N\{1 - (1/(v+2))\}.$$

(ii) Let 
$$v - 1 > l$$
. If  $f \in C^{(l)}(\mathbf{R})$  satisfies 
$$\lim_{h \to 0} \omega(f^{(l)}, \mathbf{R}; h) \log(h) = 0,$$

then we have

$$\lim_{n \to \infty} \max_{x \in I} W_{rQ}^{v}(x) |L_{n}^{(j)}(l, v, f; x) - f^{(j)}(x)| = 0, \quad 0 \le j \le l\{1 - (1/(v+2))\}.$$

We will show only Theorem 5.1. The proofs of other theorems are completed by the same line of proofs as [KS1] or [KS2].

**Lemma 5.5.** Let  $v \ge 2$ , and let  $f \in C(\mathbf{R})$  be uniformly continuous on  $\mathbf{R}$ . Then we have  $W_{rQ}^{v}(x)|f(x)| \le C\omega(f,\mathbf{R};a_n/n), \quad |x| \ge a_n.$ 

**Proof.** First, we show that  $W_{rQ}^{1/2}(x)|f(x)|$  is bounded on **R**. In fact, if it is not true, then we see that there exists a sequence  $\{x_k\}_{k=1}^{\infty}, 0 < x_1 < x_2 < x_3 < ..., x_{k+1} - x_k \ge 1$ , such that  $W_{rQ}^{1/2}(x_k)|f(x_k)| = \mu(x_k) > 1$ . For simplicity, we suppose that  $f(x_k) > 0$ . We may consider that  $\mu(x_k)$  is increasing, then

$$f(x_{k+1}) - f(x_k) = \mu(x_{k+1}) W_{rQ}^{-1/2}(x_{k+1}) - \mu(x_k) W_{rQ}^{-1/2}(x_k)$$
  
$$\geqslant \mu(x_1) \{ W_{rQ}^{-1/2}(x_{k+1}) - W_{rQ}^{-1/2}(x_k) \}.$$

Since f(x) is continuous, we see that for any fixed h, 0 < h < 1 there exists a sequence  $\{x_k(h)\}_{k=1}^{\infty}$  such that  $x_k \le x_k(h)$  and

$$\{f(x_k(h) + h) - f(x_k(h))\}/h = \{f(x_{k+1}) - f(x_k)\}/(x_{k+1} - x_k)$$

$$\geqslant \mu(x_1) \{W_{rQ}^{-1/2}(x_{k+1}) - W_{rQ}^{-1/2}(x_k)\}/(x_{k+1} - x_k)$$

$$\geqslant C(W_{rQ}^{-1/2})'(x_k),$$

where C is a positive constant. Here, for k large enough we have  $h(W_{rQ}^{-1/2})'(x_k) \ge 1$ . Then we see  $f(x_k(h) + h) - f(x_k(h)) \ge C$ , where C is a positive constant independent of h. But for h small enough this contradicts the uniformly continuity.

Now, since  $Q(a_n) \sim n$  (see [LL2, Lemma 5.2]), we have for  $|x| \ge a_n$ 

$$W_{rO}^{\mathsf{v}}(x)|f(x)| \leq CW_{rO}^{1/2}(a_n) \leq Ca_n/n \leq C\omega(f,\mathbf{R};a_n/n).$$

**Lemma 5.6.** Let  $f \in C(\mathbf{R})$  be uniformly continuous on  $\mathbf{R}$ . Then there exists a polynomial  $P \in \Pi_n$  such that for  $x \in \mathbf{R}$  we have

$$|f(x) - P(x)|W_{rQ}^{\nu}(x) \leq C\omega(f; \mathbf{R}, a_n/n), \tag{5.1}$$

$$|P^{(j)}(x)|W_{rO}^{\nu}(x) \le C_j(n/a_n)^j \omega(f; \mathbf{R}, a_n/n), \quad j = 0, 1, 2, ...,$$
 (5.2)

where  $W_{rOn,2\lambda}$  is defined in (2.1), and  $C, C_i$  are constants.

**Proof.** By Teljakovskii [Te] we have the following. For  $g \in C[-1,1]$ , there exists  $T(x) \in \Pi_n$  such that

$$|g(t) - T(t)| \le C\omega([-1, 1], g; (1 - t^2)^{1/2}/n),$$
  
 $(1 - t^2)^{1/2} |T'(t)| \le Cn\omega([-1, 1], g; (1 - t^2)^{1/2}/n),$ 

where  $\omega([-1,1], g; h)$  is the modulus of continuity for g on [-1,1]. Therefore, we see that for  $|x| \le Da_n$ , D > 1

$$|f(x) - P(x)| \le C\omega(f; [-2Da_n, 2Da_n], 2Da_n/n)$$

$$\le C\omega(f; \mathbf{R}, a_n/n)$$
(5.3)

$$|P'(x)| \leq C(n/a_n)\omega(f; [-2Da_n, 2Da_n], 2Da_n/n)$$
  
$$\leq C(n/a_n)\omega(f; \mathbf{R}, a_n/n). \tag{5.4}$$

For  $|x| \le Da_n$  we see that  $|P(x)|W_{rQ}^{1/2}(x)$  is bounded. Because from (5.3) and Proof of Lemma 5.5

$$|P(x)W_{rQ}^{1/2}(x)| \le C\{|f(x)|W_{rQ}^{1/2}(x) + \omega(f; \mathbf{R}, a_n/n)W_{rQ}^{1/2}(x)\} \le C.$$

Therefore, by the infinite–finite range inequality [KaS1, Theorem 1.1] we have, for  $|x| \ge Da_n$ ,

$$|P(x)|W_{rQ}^{1/2}(x) \le C||PW_{rQ}^{1/2}||_{L_{\infty}\{|x| \le a_n\}} \le C.$$

So for  $|x| \ge Da_n$  we have

$$|P(x)|W_{rQ}^{\nu}(x) \le CW_{rQ}^{\nu-1/2}(Da_n) \le C\omega(f; \mathbf{R}, a_n/n).$$
 (5.5)

Consequently, we have, by (5.3), (5.5) and Lemma 5.5,

$$|f(x) - P(x)|W_{rO}^{v}(x) \leq C\omega(f; \mathbf{R}, a_n/n), \quad x \in \mathbf{R},$$

that is we obtain (5.1).

We have to show (5.2). By (5.4) and the infinite–finite range inequality we have, for  $|x| \ge Da_n$ ,

$$|P'(x)|W_{rO}^{v}(x) \le C||P'W_{rO}^{v}||_{L_{\infty}\{|x| \le a_{n}\}} \le C(n/a_{n})\omega(f; \mathbf{R}, a_{n}/n).$$

So, noting (5.4) for  $x \in \mathbb{R}$ ,

$$|P'(x)|W_{rO}^{\nu}(x) \leqslant C(n/a_n)\omega(f; \mathbf{R}, a_n/n). \tag{5.6}$$

Consequently, repeating of the Markov inequality (Theorem 2.1), the inequality (5.6) means

$$|P^{(j)}(x)|W_{rQ}^{\nu}(x) \leq ||P^{(j)}W_{rQ}^{\nu}||_{L_{\infty}(\mathbf{R})}$$
  
$$\leq C_{j}(n/a_{n})^{j}\omega(f;\mathbf{R},a_{n}/n), \quad j = 0, 1, 2, ...,$$

so (5.2) is shown. Consequently, the lemma is complete.  $\Box$ 

**Definition 5.7.** We define  $\Phi_n(x) = \max\{n^{-2/3}, 1 - |x|/a_n\}^{1/4}$ .

We note that for some positive constants C,

$$CW_{rQ}(x) \le (1+|x|)^{-\nu\eta/6} \le C\Phi_n^{\nu}(x) \le C.$$
 (5.7)

In fact, the first inequality is easy to show. For the second inequality if  $x \le (1/2)a_n$ , then it is trivial, and if  $(1/2)a_n < x$ , then we see  $(1+|x|)^{-\eta/6} \le Ca_n^{-\eta/6} \le Cn^{-1/6} \le \Phi_n(x)$ .

**Lemma 5.8.** We write some basic results.

(i) If n is odd, then we have

$$|P_{n-1}(0)| \sim (n/a_n)^r a_n^{-1/2},$$

$$|P'_n(0)| \sim (n/a_n)^r n a_n^{-3/2}$$
 [KaS1, Theorem 1.9](i).

(ii) Uniformly for  $2 \le j \le n$ , n = 2, 3, 4, ..., we have

$$Ca_n/n \leq x_{j-1,n} - x_{jn}$$

especially for  $|x_{in}|, |x_{i-1,n}| \leq \eta a_n, 0 < \eta < 1$ , we see

$$x_{i-1,n} - x_{in} \sim a_n/n$$
 [KaS1, Theorem 1.10].

Sketch of proof for Theorem 5.1. We recall the definitions of Hermite–Fejér interpolation polynomials. For  $f \in C(\mathbf{R})$  we define

$$L_n(v,f;x) = \sum_{k=1}^n f(x_{kn})h_{kn}(v;x),$$

and define for  $f \in C^{(v-1)}(\mathbf{R})$ ,

$$L_n(v-1,v,f;x) = \sum_{k=1}^n \sum_{s=0}^{v-1} f^{(s)}(x_{kn}) h_{skn}(v-1,v;x).$$

Let  $f \in C(\mathbf{R})$ , and let  $P \in \Pi_n$  satisfy inequalities (5.1) and (5.2).

$$\begin{split} W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6}|f(x)-L_{n}(\nu,f;x)| \\ &\leq W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6}\{|f(x)-P(x)|+|L_{n}(\nu,f-P;x)| \\ &+ \sum_{k=1}^{n} \sum_{s=1}^{\nu-1} |P^{(s)}(x_{kn})||h_{skn}(\nu-1,\nu;x)|\}. \\ &\leq W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6}|f(x)-P(x)|+W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6} \\ &\times \sum_{k=1}^{n} W_{rQ}^{\nu}(x_{kn})|f(x_{kn})-P(x_{kn})|W_{rQ}^{-\nu}(x_{kn})|h_{kn}(\nu;x)| \end{split}$$

$$+ W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6} \sum_{k=1}^{n} \sum_{s=1}^{\nu-1} |P^{(s)}(x_{kn})| |h_{skn}(\nu-1,\nu;x)|$$

$$\leq C\omega(f;\mathbf{R},a_{n}/n)(1+|x|)^{-\nu\eta/6} \left\{ 1 + W_{rQ}^{\nu}(x) \sum_{k=1}^{n} W_{rQ}^{-\nu}(x_{kn}) |h_{kn}(\nu;x)| \right\}$$

$$+ W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6} \sum_{k=1}^{n} \sum_{s=1}^{\nu-1} |P^{(s)}(x_{kn})| |h_{skn}(\nu-1,\nu;x)|. \tag{5.8}$$

We estimate the Lebesgue constant

$$W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6} \sum_{k=1}^{n} W_{rQ}^{-\nu}(x_{kn})|h_{kn}(\nu;x)|, \tag{5.9}$$

and the sum

$$W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6} \sum_{k=1}^{n} \sum_{s=1}^{\nu-1} |P^{(s)}(x_{kn})h_{skn}(\nu-1,\nu;x)|.$$
 (5.10)

First, we estimate (5.9). We use Lemmas 1.5(a),(d),(e), 5.8, Corollary 3.4 and (5.7).

$$W_{rQ}^{\nu}(x)(1+|x|)^{-\nu\eta/6} \sum_{k=1}^{n} |h_{kn}(\nu;x)|$$

$$\leq \sum_{x_{kn}\neq 0} \left| \frac{W_{rQ}(x)\Phi_{n}(x)P_{n}(x)}{(x-x_{kn})W_{rQ}(x_{kn})P'_{n}(x_{kn})} \right|^{\nu}$$

$$\times \sum_{i=0}^{\nu-1} |e_{i}(\nu,k,n)(x-x_{kn})^{i}|$$

$$\leq \sum_{x_{kn}\neq 0} \left| \frac{W_{rQ}(x)\Phi_{n}(x)P_{n}(x)}{(x-x_{kn})\Phi_{n}^{-1}(x_{kn})W_{rQ}(x_{kn})P'_{n}(x_{kn})} \right|^{\nu}$$

$$\times \sum_{i=0}^{\nu-1} |e_{i}(\nu,k,n)(x-x_{kn})^{i}| \quad (\text{note } (5.7))$$

$$\leq \sum_{x_{kn}\neq 0} (1/j(x,k))$$

$$\leq C \log(1+n), \tag{5.11}$$

where

$$|x-x_{kn}| \sim j(x,k)a_n/n$$
.

Next, we estimate (5.10). By above method and (5.2), we see

$$W_{rQ}^{v}(x)(1+|x|)^{-v\eta/6} \sum_{k=1}^{n} \sum_{s=1}^{v-1} |P^{(s)}(x_{kn})| |h_{skn}(v-1,v;x)|$$

$$= W_{rQ}^{v}(x)(1+|x|)^{-v\eta/6} \sum_{k=1}^{n} \sum_{s=1}^{v-1} |P^{(s)}(x_{kn}) W_{rQ}^{v}(x_{kn})| W_{rQ}^{-v}(x_{kn})$$

$$\times |h_{skn}(v-1,v;x)|$$

$$\leqslant \sum_{x_{kn}\neq 0} \sum_{s=1}^{v-1} \sum_{i=s}^{v-1} (n/a_{n})^{s} \omega(f;\mathbf{R},a_{n}/n)$$

$$\times \left| \frac{W_{rQ}(x) \Phi_{n}(x) P_{n}(x)}{(x-x_{kn}) W_{rQ}(x_{kn}) P_{n}'(x_{kn})} \right|^{v} |e_{si}(v,k,n)(x-x_{kn})^{i}|$$

$$\leqslant C \omega(f;\mathbf{R},a_{n}/n)$$

$$\times \sum_{x_{kn}\neq 0} \sum_{s=1}^{v-1} \sum_{i=s}^{v-1} \left| \frac{W_{rQ}(x) \Phi_{n}(x) P_{n}(x)}{(x-x_{kn}) \Phi_{n}^{-1}(x_{kn}) W_{rQ}(x_{kn}) P_{n}'(x_{kn})} \right|^{v}$$

$$\times |(n/a_{n})^{s}(n/a_{n})^{i-s}(x-x_{kn})^{i}|$$

$$\leqslant C \omega(f;\mathbf{R},a_{n}/n) \sum_{x_{kn}\neq 0} (1/j(x,k))$$

$$\leqslant C \log(1+n) \omega(f;\mathbf{R},a_{n}/n)$$
(5.12)

for *n* large enough.

Consequently, by (5.8), (5.11) and (5.12) the proof of the theorem is complete.  $\Box$ 

#### Acknowledgments

The authors thank the referee in helping to put this paper in its present form.

#### References

- [Ba] W.C. Bauldry, Estimates of Christoffel functions of generalized Freud-type weights, J. Approx. Theory 46 (1986) 217–229.
- [Ja] D. Jackson, The Theory of Approximation, Colloquium Publications, Vol. 11, American Mathematical Society, Providence, RI, 1930.
- [KS1] Y. Kanjin, R. Sakai, Pointwise convergence of Hermite–Fejér interpolation of higher order for Freud weights, Tohoku Math. J. 46 (1994) 181–206.
- [KS2] Y. Kanjin, R. Sakai, Convergence of the derivatives of Hermite-Fejér interpolation polynomials of higher order based at the zeros of Freud polynomials, J. Approx. Theory 80 (1995) 378–389.
- [KaS1] T. Kasuga, R. Sakai, Orthonormal polynomials with generalized Freud-type weights, J. Approx. Theory 121 (2003) 13–53.

- [KaS2] T. Kasuga, R. Sakai, Conditions for uniform or mean convergence of higher order Hermite– Fejér interpolation polynomials, manuscript.
- [LL1] A.L. Levin, D.S. Lubinsky, Canonical products and the weights  $\exp(-|x|^{\alpha}), \alpha > 1$ , J. Approx. Theory 49 (1987) 149–169.
- [LL2] A.L. Levin, D.S. Lubinsky, Weights on the real line that admit good relative polynomial approximation, with applications, J. Approx. Theory 49 (1987) 170–195.
- [LL3] A.L. Levin, D.S. Lubinsky,  $L_{\infty}$  Markov and Bernstein inequalities for Freud weights, SIAM J. Math. Anal. 21 (1990) 1065–1082.
- [LL4] A.L. Levin, D.S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992) 463–535.
- [LL5] A.L. Levin, D.S. Lubinsky,  $L_p$  Markov–Bernstein inequalities for Freud weights, J. Approx. Theory 77 (1994) 229–248.
- [LM] D.S. Lubinsky, F. Moricz, The weighted  $L_p$ -norms of orthonormal polynomials for Freud weights, J. Approx. Theory 77 (1994) 42–50.
- [SV] R. Sakai, P. Vértesi, Hermite-Fejér interpolation of higher order. III, Studia Sci. Math. Hungar. 28 (1993) 87–97.
- [Te] S.A. Teljakovskii, Two theorems on the approximation of functions by algebraic polynomials, Math. Sbornik 70 (2) (1966) 252–265.