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Abstract

Let Q: R— R be even, nonnegative and continuous, Q' be continuous, Q' >0 in (0, c0), and
let Q" be continuous in (0, co). Furthermore, Q satisfies further conditions. We consider a
certain generalized Freud-type weight W,zQ(x) = |x|2' exp(—20(x)). In previous paper
(J. Approx. Theory 121 (2003) 13) we studied the properties of orthonormal polynomials
{P,,(W,ZQ; x)}., with the generalized Freud-type weight W,ZQ(x) on R. In this paper we treat
three themes. Firstly, we give an estimate of P,,(W,?Q; x) in the L,-space, 0 <p< oo. Secondly,
we obtain the Markov inequalities, and third we study the higher-order Hermite—Fejér
interpolation polynomials based at the zeros {x, };_, of P,,(W,ZQ; x). In Section 5 we show that
our results are applicable to the study of approximation for continuous functions by the
higher-order Hermite-Fejér interpolation polynomials.
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0. Introduction

Let O: R—R be even, nonnegative and continuous, Q' be continuous, Q' >0 in
(0, c0), and let Q" be continuous in (0, o0 ). Furthermore, Q satisfies the following
condition:

1<A<{(d/dx)(xQ'(x))}/Q'(x)<B, xe(0,0), (0.1)

where 4 and B are constants. Letv=1,2,3, ... . If v = 1, then we assume (0.1). For
v=>2 we suppose (0.1) and further that Qe CO+*(R) and

0<xQU (/0B =23,y
Q<"“)(x)T(nondecreasing), x€e(0, ), (0.2)

where B is a positive constant. Then we consider generalized Freud-type weights
W.o(x) such that

Wio(x) = x| exp(—0(x)),  xeR, (0.3)

where r=0 except for Sections 3 and 4, but in Sections 3 and 4 we suppose r> — 1/2.
We say that the weight W,o(x) satisfies the condition C(v). For simplicity we write

Wo(x) = Wyo. We consider the series of orthonormal polynomials {Pn(Wer; X) o

with weight (0.3), where P, ( W,,ZQ; x)€e [[, and ], denotes the class of polynomials of

degree <n. The orthonormal polynomials are constructed by

/ v Pi(WfQ; t)P_,(Wf@ ?) WrZQ(t) dt = ¢; (Kronecker’s delta),
—
ij=01,2,....

In previous paper [KaS1] we have investigated some interesting properties of

orthonormal polynomials {P,,(W,,ZQ;x)};i o- In this paper we treat three different

themes. Firstly, we give an estimate of P,,(Wrzg; x) in the L,-space, 0<p< 0.
Secondly, we obtain the Markov inequalities, and third we study the higher-order
Hermite-Fejér interpolation polynomials based at the zeros {x}i_;,
— 00 <Xy < o <X < X1, < 00, Of Py W,,ZQ; x). In Section 5 we show that our results
are applicable to the study of approximation for continuous functions by the higher-
order Hermite—Fejér interpolation polynomials. These are also essential to our next
study [KaS2] with respect to a necessary and sufficient condition for a convergence
of the higher-order Hermite—Fejér interpolation polynomials.

For fe C(R) we define the higher-order Hermite—Fejér interpolation polynomial
L,(v,f;x) based at the zeros {xx,};_, as follows:

L"(v7f; xkn) :f(xkl’l)v k - 1,2, ey ny
LO0.fixm) =0, k=12, i=12 .v-1 (0.4)

L,(1,f;x) is the Lagrange interpolation polynomial, and L,(2,f; x) is the ordinary
Hermite—Fejér interpolation polynomial. The fundamental polynomials
hin(v;x) € 11,,_, for the higher-order Hermite—Fejér interpolation polynomials of
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(0.4) are defined as follows:

v—1
hkn(v;x) = ll‘én(x) Z ei(vvka n)(x - xkn)l;
0

=

ei(v,k,n) (0<i<v—1): real coefficients,

P, (WEQ; X)
( an)P, (WrQa xkl’l)
ien (Vs Xpn) = Oips h,ﬁ,ﬁ(v;x,,n)zo, p=12,...n i=12...,v—1.

Ikn (X) =

Using them, we can write as

7fa Zf xkn hkn V x)

Furthermore, we extend the operator L,(v,f;x). Let / be a nonnegative integer,
and let v — 1>1. For fe C"(R) we define the (/,v)-order Hermite-Fejér interpola-
tion polynomials L,(/,v,f;x)e [],,_; as follows. For each k = 1,2, ..., n,

Ln(LV,f;xkn) :f(xkn)a L;/)(L\)?f’ xkn) :f(.j)(xkn)7 ] = 1727 ...,1,
Lflﬁ(l,v,f;an) =0, j=I+1,142..,v—1

Especially, L,(0,v,f;x) is equal to L,(v,f;x), and for every polynomial
P(x)e [],,.; we see L,(v—1,v,P;x)=P(x). The fundamental polynomials
hgn(vix) € [1,,_1: & =1,2,...,n, of L,(I,v,f;x) are defined by

v—1

hsien(1,v; ) = 1}, (X) Z ei(v, ke, n)(x — xp)', s=0,1,...,v—1,

i=s

e (i<s<v—1): real coefficients,

hskn(l Vi Xpn) = 05j0kp, s§=0,1,...,v—1, p=1,2,....n, j=0,1,...,v—1.

Then we have

/

Lu(lv,f5) = > > Y (o) sten (1, v; ).
k=1

s=0

We need some definitions. The Mhaskar-Rahmanov-Saff number g, is the unique
positive root of the equation

1
u=(2/n)/0 a0 (aut)(1 — &)\ dr, u>0.
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We also consider the root x = ¢, >0 of u=xQ'(x) for u>0. Let us denote the

leading coefficient of the orthonormal polynomial P,( WfQ; x) by y,, and then we set

by =79,_1/v,- Then we have

ayp~gu~by~x1,, n=1273 .. [LL4, Ba, Theorem 3.5],

where if for two sequences {c,},-, and {d,},-, there are positive numbers C, D such
that C<¢,/d, <D, then we denote this fact as ¢, ~d,. We will use the same constant
C even if it is different in the same line.

Remark. In previous paper [KaS1] we assumed r> — 1/2 in (0.3). In this paper we
need to suppose r=0.

1. Estimate of ||P,(W7,) Wollr, i

In this section we suppose condition (0.1) and =0 in (0.3).

Theorem 1.1. Given 0<p< o0, we have, for n=1,

1, p<4,

L®y ~ "7 % § {log(1 +m)}t p=4,
(,,1—2/3)‘/17*1/47

1Pa(Wig) Wil

p>4.

When r = 0, the result has been obtained by Lubinsky and Moricz [LM]. We may
show the following.

Proposition 1.2. Given 0<p< oo, we have, for n=1,
1, p<4,
||Pn(VVr2Q) WrQnHL/,(R) Narl/pil/z x ¢ {log(1 + ”)}1/4a p=4
(n—2/3)1/P*1/47 p>4,
where W,o,(x) is defined as follows:

Wty = { W~ el W<l
[/V"Q(x)v Cln/l’lS |x|7
VVi{Qn(an/n) - XA(ILE}’;)JrO VVzlg(x) (11)

In fact, by Kasuga and Sakai [KaS1, Theorem 1.8], we see
||Pn( IJ/'ZQ) WrQn”Lp(‘X‘ g(l,,/l’l) < O(alll/pil/z).

To prove the theorem we repeat the method of [LM], that is, we only check each
lemma of [LM], then the theorem is shown easily. First we collect some lemmas,
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which are shown in previous paper [KaS1]. From now, for simplicity we write
P,(x)= Pn(W2Q; X).

Fr

Lemma 1.3. We have the followings:

(a) For n=1 and xeR,

|Pa() Wagn ()] < Ca, /(11 = |l fan| 7 7]
(by Kasuga and Sakai [KaS1, Theorems 1.13, 1.14 and Lemma 2.7)).

(b) Let 0<p< 0. There exists C>0 such that for n=1 and Pell,,
1PWoll, ) <CIPWiollL, a0,

(by Kasuga and Sakai [KaS1, Theorem 1.1]).

(c) Let |xju|<na,, 0<n<l. There exists a constant 6>0 such that for |x—
Xjn| <0ay/n,

P (X) Wyon(x)|~na; > (by Kasuga and Sakai [KaS1, Corollary 1.12]).

Proposition 1.4. Let 0<p< co. There exists C>0 such that for n=2
17 p<47
||P”(Wr2Q)WrQn||LP(R)<Ca,1,/p71/2 X {log(l +I’l)}1/4, p =4,
(=23t psa,

Proof. Tt follows from Lemma 1.3(a) and (b) by considering the parts of |x|<a,
(1 —=n"?3) and a,(1 — n2)<|x|<a,. O

We need to give the lower bounds.

Lemma 1.5. (a) For n>1,

|X1n/ay — 1|<Cn3  (by Kasuga and Sakai [KaS1, Theorem 1.3]),
and uniformly for n=3 and 2<j<n—1

Xjtn = Xt~ (an/m)[max{n 27,1 — [x;,] /a,}] "

(by Kasuga and Sakai [KaS1, Theorem 1.4]).
(b) Uniformly for n=2, and 1<j<n— 1,

max{n=23, 1 — |xj,|/a,} ~max{n=3 1 — |x;1,|/a,}

(by Kasuga and Sakai [KaS1, (2.11)]).
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(c) For n=1, 1<k<n and xeR,
|Po(x) Wio(x)| < C(na, ) max{n =7, 1 = |x|/a,}]""*|x — xp,
(by Kasuga and Sakai [KaSl1, (2.16)]).
(d) We have
|Po(x) Wrg(x)| < Cay P max{n>, 1 |x|a, }]
(by Kasuga and Sakai [KaS1, Theorem 1.8]).
(e) Uniformly for n=1, 1<j<n
[Py (in) Wron (%n) | = [{ Pu(x) WrQn(x)};:x,n
~ na, P max{n 1 — |x| /a,}
(by Kasuga and Sakai [KaS1, (1.8)]).

(f) Uniformly for n=1, 1<j<n—1 and xeR,

]1/4

1 ()] ~ (a2 [m) Wrgu () [max{n=, 1 = ||/, )1
X |Pu(x)/(x = x)| - (by (e)).
(g) Uniformly for n=1, 1<j<n—1and xeR,
[ () W, 0 (Xin) Wy 0n ()| < C. (1.2)
(h) We have

max |P.(x)|~(n/a,) na,** (by Kasuga and Sakai [KaS1, (1.11)]).

[ < X210

Proof. We may only prove (g). First, by Kasuga and Sakai [KaS1, Lemma 2.7] we
have
||PWVQ||L,L(\x\<(Sa,,/n) < C| |PWrQ‘ |Lx((5a,1/n<\x\<a,,)

for Pe [],, where 6>0 is small enough. Therefore, in (c) we can exchange W,o(x)
for W,p.(x). Then, by (f) and (c) we have

[in () W, 0 (Xin) Worgn (%)
<(a@)?/m)[max{n~*,1 = x| /a,}] "
X | Py(x) Wrgn(x) / (x = xju)]
<Cl(max{n > 1 = |x|/a,})/(max{n"2*,1 = x| fa,})]"*.
If for some fixed C>0,

max{n~?31 — |x|/a,} <Cmax{n=3 1 — |x;u|/an}, (1.3)
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then we obtain (g). If we set
—2/3. _ -2/3 —
Xi—gp = X1 + Saun / 3 Xngspn = Xpn — SAph / , s=1,2,

then (b) implies (1.3) for xe (xj_2,, Xj42,), with a large C. On the other hand, if (1.3)
is not true, so that x¢ (Xj_2,,Xj12,), then Lemma 1.3(a) and (e) of this lemma show
that

[ (X)W (Xn) Wrgn ()]

N ’(P"(i)fV ;in(X)> (P 7 (Xjn) VlVrQn(Xjn))‘
<C<%ﬂ> [max{n23,1 = x| fa,}]~"*

x a, P[0 =[xl /an) " + 07V a0 — !
< Clmax{n>7, 1= gl fan}] /(11 = |x|/ay| " + )
(by (a) and (b))
< Cl(max{n 21— [xp|/ay})/(max{n 2> 1 = |x|/a,})]"*
<C

for C large enough, as (1.3) does not hold. So we still have (1.2). Hence (g) is
true. O

Lemma 1.6 (Cf. Lubinsky and Moricz [LM, p. 49]). Let na,<|xp|, 0<n<l,
N1 = X (1 = 0723), xop = x1,(1 +1n723). Then, for xe(Xjs 1, Xj-1),
[(PuWr0) () /{(x = ) Py, (jn) Wi (x5) }] |
< Cn/ay)max{n 3,1 — x| fa,}]'"*

Proof. Let [z] denote the maximum integer nonexceeding z. We may assume x> 0.
Then we see

(P WW20) (x) /{ (x = ) P, () W (in) }]
= [P, W) () /{ (= xn) P, (i) Wi (x5n) } ]
= (r = [+ P, W) () /(o = ) P (i) Wro (i) }
+ 2 IR P W) () /4 (= ) P () W (i) }] -
Here, by Lemma 1.5(g),
[ = [+ 1), W) (36)/{(x — i) P (i) Wi (5in) |
< Cat, (P Wrg) () /{(x = Xju) P (xin) Wrg (i)} < Cay (1.4)
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Furthermore, by the Markov—Bernstein inequality [LM, Lemma 2.4],
LI P, W) (x) /{ (= X3a) P (xin) Wio (i) }] |

(=)

x [max{n~>1 — |x|/a,}]"/*.

< C(n/ay)|x 0|

L (R)

For 0<1<2a,,

(P, W) (1) /{(2 = x3a) Py (i) Wi (i) }|
= (/)TN P ) (1) (= 1) Py (i) Wi (i)}
<C (by Lemma 1.5(g)).

For 2a, <,

TP W) (0) /(2 = i) Py (i) Wi ()}
< Cl (P W) (1) /{207 P (i) Wi ()
<Ca; 0!/ ) (ayna; ¥ n16)
<Cn~?3  (by Lemma 1.5(d) and (e)).

Therefore, by (1.5) we have

I (P W) () /(3 = i) Py (i) Wi (xn) |
< C(n/a,)[max{n=23 1 - |x|/a,,}]l/2.

Here, since x € (X1, Xj—1,) We see by Lemma 1.5(b),

[max{n=7, 1 — [x|/a,})'"? ~ [max{n**,1 ~ x| /a,}]'"%,

consequently, with (1.4) we have the lemma. O

Lemma 1.7 (Kasuga amd Sakai [KaS1, Corollary 1.12]). Let |x;|<na,, 0<n<1.

(i) Let n be odd. For da,/n<|x| <X}/, 6>0,
| Pu(x)| ~ (n/an)" a, ',
and there is a constant §' >0 such that for |x|<d'a,/n,
[P ()|~ (n/ay) na, >,
Let n be even. For —Xjua)n + 00y /NS X< Xpyj20 — 0an/n, >0, we see

| Po(x) Wrg(x)| ~a, /2.

(i) Let Xy =0 or x4—1,<0. For Xp + 0ty /n <X <Xp_1 4 — 0a,/n, 6>0, we see

| Pal) Wro(x)| ~a, "2,



T. Kasuga, R. Sakai | Journal of Approximation Theory 127 (2004) 1-38 9

and there is a constant &' >0 such that for xj, — &' a,/n<|x|<xp, + 8'a,/n,

[P (x) Wig(x)| ~na, 2.

Lemma 1.8. There exists C>0 such that uniformly for n=1, 1 <j<n, and for
| = Xial < Clan/m)[max{n 7,1 — [x;| fa }] 12,
we have

| Pa(x) Wyga (x)| ~ (na,* ) [max{n>, 1 — |xl /a}]' " = .

Proof. If x;, = 0 (that is n is odd), then we have the lemma by using Lemmas 1.5(h)
and 1.7(i). Therefore, we may assume x;, #0. We consider the polynomial
Tjn(x) = u(x) Wr_an(xjn)-

We have (7, W,g,)(xs) = 1, and by Lemma 1.5(g) we see ||z, Wronll, ® <C, with C
independent of j and n. Here let #>0 be fixed, and let

e = o(j,n) = nlan/m)[max{n>>, 1 = |xu|/a,}] """, (1.6)

We use x|_s, and X,q5,, s = 1,2, which are defined in the proof of Lemma 1.5(e).
Now if 5 is small enough, Lemma 1.5(a) shows that uniformly for 1<j<n

(X = &ns Xju + &) S (Xjt2n + &0y Xj-2n = &n)- (1.7)
Let na, <|xj|, 0<n<1. Then for x€ (xjy — &, X + &), Lemma 1.6 shows that
(5 Wron)' ()| < C (/) max {n 2,1 = |l /an}]'.
If te(xj, — &n, Xjn +&n), we have, for some ¢ between ¢ and x;,,
(0 Wron) (O] = [(Ta Wrgn) (xn) + (Ta Wr0n) () (£ = ;)]
> 1 = C(nfa,)[max{n™", 1 = |x;|/a,}]" e,
=1-Cn=1/2
when 5 of (1.6) is small enough. Therefore,
|(Tjn Weon) ()|~ 1, t€(Xjn — &n, Xjn + &), (1.8)

and by Lemma 1.5(f) and the definition of 7;,(x) we have the lemma.
Let |xju|<na,, 0<n<1. Then by Lemma 1.3(c) we have (1.8). In fact, by Lemma
1.7, for te (xjy — en, Xjn + &n),

(2 Wron) ()] = (P Win) (8) /(2 = Xju) P, (jn) Wiyon(Xjn) } |
= [(PaWr0n)' (&) /{ P (Xjn) Wron(xjn) }|
X (|&€ = x| <|t — Xju| <dan/n)

=>C>0
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by |(PuWoon) (€)= (1/2)|(P,Wyrn)(€)| for & small enough). Therefore, we also
obtain (1.8), and so by Lemma 1.5(f) and the definition of 7;(x) we have the
lemma. O

Remark 1.9. By (1.8), we have, for j =2,3, ... n,
Xt = Xy~ /) max{m /3,1 = [l fa,}) 7. (1.9)

In fact, we see (TjuWion)(Xj—1,) = 0. If xj_1,€(Xjn — &1, Xju + &n), then by (1.8) we
see (TjuWion)(Xj—1,)#0. But this contradicts. Therefore, we have xj_i,¢ (x;, —
&n, Xjn +&,). From this and Lemma 1.5(a) we have (1.9).

Proof of Proposition 1.2. We fix j as 1<j<n. Let C be the constant in Lemma 1.8,
and let us consider ¢, with # = C in (1.6). First let x;,5,, >0 or x;_», <0. By (1.7) and
Lemma 1.8 we have

/ T P W) ()P dx

Xjt2.n

Xjn+én
>C [ () max 5,1~ /) i d
X,

Cin—&n

> Cl(na;,>?)(max{n"> 1 — |x;| /a,})"/ P eit!

> C(ay 2 fm)[max{n 27, 1 = x| /ay}] "2

> Ca, " (xj 20 — Xjy20)[max{n > 1 - |xjn|/an}]7p/4 (by Lemma 1.5(a))

Xj-2.n
> Ca P / max {23, 1 — [¢]/an}] " di

Xj+2,n

in view of Lemma 1.5(b). Let x;, = 0. Then by definition (1.1) and Lemma 6 we see

[ 1@manwr ax

Xj+2.n

X(n/2)nHen /1
>C/ {a;'?Y dx (fixed £¢>0 small enough)

11/2]&7(;“11/"

Xj-2.n
>Ca;p/2/ max{n~>>,1— |t|/a,}] " dt.

Xj+2.n

In the case of x;, =0,i=j—1 or j+ 1 we also have the same estimate described
above. Summing, we have

/ P o) ) d

0

Xln
> Ca,?? / max{n=>>,1— |t|/a,}|""* dt

Xnn
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Xin/n
= Ca}l_p/z/ [max{n~>>1— |s|}] "/ ds
X,

/A

1-Cn2/3
>Ca,1f1’/2/1 ) /}(1 —|s)?/*ds (by Lemma 1.5(a))
—1+Cn2/3

I, p<4,
>Ca)7? x { log(l+n), p=4,
(n’2/3)17p/4, p>4.

Hence,
1, p<4,

PV Wil > Callr V2 x { flog(1 +m)}'™, p =4,
(n—2/3)1/P*1/4, p>4.

Therefore, from Proposition 1.4 we have Proposition 1.2. [

Theorem 1.1 is shown by Proposition 1.2.

2. Markov inequalities

In this section we show the Markov inequalities, which are used in the next
section. In this section we suppose r=0. For the Freud weight Wy (x) = exp(—Q(x))
we know the following theorems.

Theorem A (Levin and Lubinsky [LLS5, Remarks (a) of Theorem 1.1]). Let Q satisfy
(0.1) for A, B>1, and let 1 <p< oo. Then there exists a constant C>0 such that for

Pe Hn’
1P WollL, ) < C(n/an)| [PWoll,

Theorem B (Levin and Lubinsky [LL3, Theorem 1.1]). Let Q satisfy (0.1) for A,
B>0. Then there exists a constant C>0 such that for Pe [],,

Cn
||P/ WQHLI(R) < {[ (I/Q[_l](s)) dS}HPWQ”L%(R)’

where QU-'(x) denotes the inverse function of Q(x).
Especially if 1 <A< B, then we have

1P WrQ”Ll ®) S C(”/an)HPWrQHLI (R):

In fact, we see

/Cn(l/Q[_”(s))ds~n/an [LL4, Lemma 5.2(F)).
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We obtain analogies of Theorems A and B for the weight W,o(x) (xeR,r>0),
where Q(x) is the Freud exponent satisfying (0.1) for 4, B> 1.

Theorem 2.1. Let Q satisfy (0.1) for A,B>1, and let 1<p<oo. Then there exists a
constant C>0 such that for Pe ||

n’
1P Wioll L,y < Cn/an)l|PWiollL,r
To show the theorem we use the idea of Freud and Levin—Lubinsky [LL1,LL2].

We need some simple lemmas. Let 0<d<2, and let 1</ be large enough. For
0<d<2 we define a continuously differentiable function

o’ (2/n<|t<1),
$u(0,4;1) = 5 )
{(5/2)(1/”) 24 (1=8/2)(A/m) (t]<i/n),

and we set ¢,(0,4;¢) = 1. From now, we may assume 0<0<2.

Lemma 2.2. For  large enough there exist a polynomial T, (0, A;t) € [ [, and constants
C (i), (&) (}), C; (i) >0 such that

Cl(/l)<|Tn(5v;L;l)/¢ (0,4 0)| < C2(4),
|T5,(0,4:)/ (0, 2 1) < C3(A)n.

Proof. By Jackson’s theorem [Ja] we see that there exist 7,(d,4;¢)e [[, and a
constant C independent of ¢, such that

|T(0, 251) = (8, 4 )| < C(1/m)ox (¢, (0, 2); 1/m),
T8, 4:1) = (8, 4 )| < Coo(,, (8, 4); 1/m),
where w( f,h) is the modulus of continuity for f. Here, we see
|9(3, 25 1+ 1/m) — 48, 2 £)| < CA272(1/m)° .
Therefore, we see
IT(8, 2 1)/ (8,25 1) = 1] < C(1/, (8, 430)) (1/m)2° > (1 /)"
< CR2/{(2-0)*}<1/2
for A large enough. Hence, we have
CLA)SITu(0,4;1)/ (9, 25 )| < Co(4).
Similarly, for 4 large enough we have
| T3(8,4:0)/ b, (3, 43 1) — ’(5,/1; 0)/¢a(9,4:1)
<C(1/¢,(0,2:1))o(¢,, (0, 2): 1/m)
<(1/2)n.



T. Kasuga, R. Sakai | Journal of Approximation Theory 127 (2004) 1-38 13

Here, we see
|,(0, 250) /(9. 4; )| <{2/(2 = 0) }(on/2),

therefore, we have, for 4 large enough,
17,00, 250)/$,,(0, 2; 1) <n/2 4 {(20) /(2 = 0)}(n/2) < C5(A)n. D

We set x = 2a,t. We define a differentiable function
@, (0, 4) = (24)° (3, 4 1)
X° (2@, /n< x| <2a,),
=1 (2an)’[(8/2)(22/n)° 2 {x2/(2an)’} + (1 = 6/2)(4/n)’] (2.1)
(x| <2y /n),
and set
Sp(8, 25 x) = (2a,)° T, (0, 2; 1). (2.2)

From Lemma 2.2 we see the following.

Lemma 2.3. Let x = 2ayt, then for 2la,/n<|x|<2a,,
D, (3,75.X) ~ (2a,)° b, (8, 25 1) ~ ||,

and
S (8, 75 X) ~ (2a,)° T(8, 25 1) ~ |x|°.

From Lemmas 2.2 and 2.3 we conclude the following.
[Sn(0, 4; )/ @ (0, ;%) | = |Ta(0, 4 1)/ $(9, 25 1)
We have for |x|<2a,,
Ci(2)<[8n(0, 4 x)/ Pu(, 45 %) [ < Ca(4). (2.3)
Furthermore, we see
15,(0, 25 )/ @u(8, 23 )|
= [(1/2a0)T,(5,2; 1)/ $,,(8, 4 1) | < C3(A){n/ (2an) }. (2.4)

Let 1 <p< o0, and let the constants in (0.1) satisfy 4, B> 1. We know ay, <2a, (see
[LL1,LL2,LL3,LL4,LL5, Proof of Lemma 5.2(c)]). So we use Lemma 2.3 for
20a,/n<|x|<2ay.

Lemma 2.4 (Kasuga and Sakai [KaS1, Lemma 2.7]). We assume that pr+1>0 if
O0<p<oo,andrz=0ifp = oo. There exist constants ¢, C >0 such that for every Pe [],
andn=0,1,2, ..., we have

PW,oll L, (v <aanm) < CUPWroll 1, (sann< v <an)

where 0<p< 0.
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Now, we prove Theorem 2.1. We use the following modified weights.
For 0 < <2 we define

{ Wio(x) (Zan/n<|xl),
W(sQn,l =

Wio(dan/n)  (Ix|<Aan/n),
where 1>0 is fixed large enough.

Proof of Theorem 2.1. We take A>0 large enough, and we consider the function
®,(5,/; x) as defined in (2.1), and the polynomial S,(J, 4; x) as defined in (2.2). Let

I1<p< o, Pell,.
First, let 0<r = d<2. We use Lemma 2.3. By (2.3), we have for |x|<ay,,

|[P'(x) Wso(x)| < CIP'(x) @ (8, 45 x) Wo(x)|
< P (x)S,(8, 25 X) Wo ()|
< CHP(x)Su(0,2; )} Wo(x) — P(x)S,(0, 2 x) Wo(x)]-

So by Lemma 2.4, with ¢ small enough, and by the infinite—finite range inequality, we
have for 1<p< 0,

1P’ (x) WéQ(x)HLp(R)

< CIP' () Woo ()1, (say n< v < 20,)

< C(n/an)|[{P(x)Sn(3, 25)} Wo(x)|lL, r)
+[|P(x)S,,(3, 4 x) Wo() L, (san/n< x| <2a)

< C(n/an)||[P(x)Su(8, 25 X) Wo ()| 1, ey jn< x| <an)
+ C(n/an)|[P(x)Pu(d, 45 ) Wo ()| 1, (sa, in< x| <2a,)
(by Lemma 2.4 and (2.4))

< C(n/an)||[P(x)Su(8, 25 X) Wo ()| L, (sa, /n< x| <an)
+ C(n/an)||P(x)Sn(d, 4; %) Wo(x)]
(by (2.4))

< C(n/an)||P(X) W12 ()| 1, 0, < x| <)
(by Lemma 2.3, and see (2.5))

< C(n/a,)| [P Wsg(9)l|, m)-

Here, we used the fact

Ly,(ea,/n<|x|<2ay)

Wson2:(x)~ Wso(x) for ea,/n<|x|<2la,/n.
Now, for the general case we set for 0<r,

r=2m+o, m=0,1,2,..., 0<6<2.
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Then, we have by the infinite—finite range inequality and Lemma 2.4,

[P () Wio()l] 1, ) < CIP ()X W0 (0|1, (o n < vl <20)
< CII{P(x)x"Y W01, (eay /< x| <24,)
+ 2m||P(x)x""! W01, ey /< x1 <2a)]
< Cl(n/an)||P(x)x™ Wso(x)|lr, &)
+ (8an/n) " [[P()X" Wao(¥)|| 1, )]
< C(n/an)|[P(x)Wro(X)] L, r)»

where C = C(e). O

3. Hermite—Fejér interpolation polynomials

15

Our main purpose in this section is to give estimates of the coefficients e;(v, k, n),
esi(v,k,n), s=0,1,...,v— 1, of fundamental polynomial /i, (v; x) or h,(/,v;x). In
the next section we give the proofs of theorems. We supposed r> — 1/2 in (0.3). The
results are important for studies of convergence or divergence of the higher order

Hermite-Fejér interpolation polynomials. For the typical case W, (x) = exp(—|x|"

),

m=1,..., we have obtained some convergence or divergence theorems in
[KS1,KS2]. We can also obtain the same result for L,(v,f;x) with the weights

(0.3). In Section 5 we will report some applications.
We define

<i>{1 (- 0dd), 00w = xl/ad +10/()].

0 (i even),
To get the estimate of coefficients e;(v, k,n) we need the following theorem.
Theorem 3.1. Let Q satisfy the condition C(v+1). For i =1,2,...,v — 1 we have

(1) (0n) | < LM (5 00) + 1/ ka7 ()™, xp 0.

For xi,, = 0 we see

(7,07 (0)| < C(n/ay)".

Corollary 3.2. If Q satisfies the condition C(v), for i =1,2,...,v—1,

)Y ()| < Cnfay)', k=1,2,...n.
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Theorem 3.3. Let Q satisfy the condition C(v+1). For i =1,2,....v— 1, we have
eo(V,k,n) = 15
lei(v, k,n)| < C{M(Q; Xin) + 1/|xkn|}<i> (”/an)i7<i>a Xjen 7 0.

For xp, = 0 we see ey(v,k,n) = 1, |e;(v,k,n)|<C(n/a,)’, i=1,2,3,...,v— 1.

Corollary 3.4. If Q satisfies the condition C(v), for i=1,2,...,v—1,
eo(v,k,n) =1, |ei(v,ke,n)|<C(n/a,)’, i=12,....v—1 k=12, ..,n

The coefficients ey (!, v, k,n) have the following estimates.

Theorem 3.5. If Q satisfies the condition C(v), then we have
ew(Lv k) = 1/sl,  leu(l,v,k,n)|<C(nja,) ",
i=s,s+1,...,v—1, s=0,1,...,v—1, k=1,2,...,n.

The following theorem is important to show a divergence theorem with respect to
Ly(v.f5x).

Theorem 3.6 (Cf. Kanjin and Sakai [KS1, (4.16)], Sakai and Vértesi [SV]). Let Q
satisfy the condition C(v+ 1), and let v=1 be odd. For j=0,1,2,..., there is a

polynomial P;(x) of degree j such that (—l)j'Pj(—,u)>O for u=1,3,5, ..., and the
following relation holds. Let 0<g (small enough). Then we have an expression

exs(v.k,m) = (=1)"{1/(28) }¥,(=v) B, (k) (n/an)

x {1 +n,v,s}k s=0,1,...,(v—1)/2. (3.1)
Here 0< D, < p,(k)< D, (D) and D; are independent of n and k), and n,,(v, s) satisfies
i (v, 5)| < C max (e, &) (3:2)

Sor k with (1/¢)(an/n)<|xku| <ean, where A is a constant defined in (0.1), and the
constant C is independent of n, k and ¢.
4. Proofs of theorems

In this section we prove the results in Section 3. We use some results in [KaS1].

Lemma 4.1 (Kasuga and Sakai [KaS1, Theroem 3.6]). If Q satisfies the condition
C(v+ 1), then for i = 1,2, ...,v and x4, #0 we have

|P£1i)(xkn)| < C{M,(Q; Xtn) + 1/|xkn|}1_<i> (n/an)i_2+<i> |P;z(xkn)|~
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If xi, = 0 (that is, n odd), then

PO <Cn/a) " |P.(0), i=12, ... v.
|n( n n bl 9~ 9

Proof of Theorem 3.1. We use an induction with respect to v. Let xz, #0. Obviously
ln(x) = Pp(x) /{ (> — Xkn) Py (Xkn) }
= {1/ P, (k) H{Py (Xsen) / 1} + { Py (k) (% — Xpn) /21} + -
+ {P;(zn)<xlm)(x - xkn)nil/n!}]'

From Lemma 4.1
(YL | = [P () /{4 1) Py (k) )|
< C{M,(Q; Xkn) + 1/|xkn|}17<i+l>(”/ail)i7<i>
< C{M,,(Q; Xkn) + 1/ |t } 7 (/)< .

We assume that the theorem is true for a certain v>1. Then

2 () (B D" o) (i)™ k)

s=0

1
< CZ {M,(Q; xn) + 1/|xkn|}<s>+<zfs>(n/an)zf<s>7<lfs>
s=0

(N2, | =

< C{M, (03 xkn) + 1/ 15l <7 (m/ @) <7
For x;, = 0 we can show the theorem similarly. [

Proof of Corollary 3.2. This is trivial by Theorem 3.1, because
M, (Q; xin) + 1/ | x| < Cnfa,. O

Here we can estimate the coefficients e;(v, k,n) of the fundamental polynomials
Pien (V5 X).

Proof of Theorem 3.3. Let xi, #0. Obviously ey(v,k,n) = 1. Using the properties of
hn(v; x), for i>0,

i—

(v ke,m)< €Y ey (v, ke, )| (1) (k)|

- u
Il
- o

A

¢ {M( O Xkn) + l/|xkn\}<s> (n/an)S’<S>

s=0
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X AM(O: Xpn) + 1/ |x1n|} 77 () @)
i1
< CZ (My(Q; x1m) + 1/ x|} <+ (/)= <= i
=0
< C{M,(0; 1 iy i— (i
S { n(vakn)+ /|xkn|} (n/an) .

For xp, = 0 we can show the result similarly. [

Proof of Corollary 3.4. From Theorem 2.3 the corollary is trivial, because
Mn(Q;xkn) + 1/|xlm‘ < Cn/an~ |

Using the method of proving Theorem 3.3, we can show Theorem 3.5.

Proof of Theorem 3.5. We prove it by induction for i. From /Ay, (/,v, xk,) = 1, it
follows that ey (/,v,k,n) = 1/s!, so the case i =s holds. By (0.5) and the fact

hskn(l v, Xkn) =0, s+ 1<i<v — 1, we easily see

eis(l,v,k,n) Z {1/(i = p)'Yeps(l, v, k ) (L)) (),
s+l<l<v—l.

Since M, (xp,) < C(n/ay), it follows from Corollary 3.2 that |(IZ;1) (xkn)| <C(an/n)”*
for every s, where C is independent of n and k. This inequality and the assumption of
induction lead to

i—1
len(L v, km)| < C S el v,k m)|[(1,) " (i)

p=s
CZ (n)a,)!*(n)a,) " <C(n/a,) ™",

where C is independent of n and k. [

Next, we show Theorem 3.6. The method of proving is an analogy of [KSI],
therefore we only sketch the proof simply.
We define

[xl/ay +1Q'(x)] +1/1x],  x=0,

MﬂQm%—{MMO7 -

We need some lemmas.

Lemma 4.2 (Kasuga and Sakai [KaS1, Theorem 1.6]). We have an expression
P, (x) = Ay(x)Pp1(x) = Bu(x) Pu(x) — 2r{Py(x)/x}",
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where

O(x, ) W? olt) dt,

() O(x, 1) Wyy(1) dt,

/5’3
nf

8

xX)/x} =
O(x, 1) ={Q'(1) = Q(x)}/(t = x).

{ /x (n: odd),

(n: even),

We estimate A4,(x) and B,(x).

Lemma 4.3 (Kasuga and Sakai [KaS1, Theorems 1.7 and 3.2]). Let Q satisfy the
condition C(v+ 1). For |x|<Da,, D>0, we have the following estimates:

() An(x)~n/ay, |B,(x)|<Cn/ay,
(ii) for each odd integer j, 1 <j<v — 1, we have

|45 (x)| < C|x|n/a]*?,
and for each even integer j, 0<j<v — 1, we have
B\ (x)|< Clx|n/a] 2.

Now, we need some preliminaries. By Kasuga and Sakai [KaS1, Theorem 3.3] we
have the following differential equation. For any odd integer n>1

Py —(Q +4,/4,)P,
+ {(bnAnAn-1/bn-1) + BuBy_1 — (xAy_1Bn/bp_1)
+ B, — (4,By/An) = 2r(Ap-1/bn-1)} Py
+2r(xP, — P,)/x* + 2r(B,_1 — A,/ A,)(Py/x) = 0,
and for any even integer n>2
Py —(Q + A4,/ A40) P, + {(bnAnAn-1/by—1) + BuBy1 — (XAy-1Ba/by1)
+ B, — (A, By/An)} Py + 2r(P,,/X) + 2rB,(P,/x) = 0.

We rewrite these differential equations as follows. For any odd integer n,

a(x)Pl(x) + b(x)P,(x) + ¢(x)Py(x) + D(x) + E(x) = 0, (4.2)
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e(x) = {baAp(x) A1 (x) /b1 } + Au(x) By(x) By (%)
— {x A (x) Ay -1 (%) Bu(x) /bu1 } + An(x) B, (x) — A, (x) Bu(x)
—2r{d,(x)A,-1(x)/bp-1}
=c1(x) + c2(x) 4+ e3(x) + ca(x) + ¢s5(x) + ¢6(x),

D(x) = 2r{A,(x)By_1(x) — A, (x) {Pu(x)/x},
E(x) = 2rAu(x)[{xP,,(x) = Pu(x)}/x’].
For any even integer n
a(x) Py (x) + b(x) P, (x) + ¢(xX)Pu(x) + D(x) + E(x) = 0,

where

c(x) = {bnAi(x)Anfl(x)/bnfl} + A (x) By (x) By-1(x)
— x4, (xX) A1 (X) By(x) /by—1 } + Au(x) B, (x) — A4,,(x) By()
=c1(x) 4 c2(x) + e3(x) + ca(x) + es(x),

D(x) = 2rdu(x)By(x){Pu(x)/x},  E(x) = Au(x){P,(x)/x}.

(4.5)

By (4.2) and (4.4), forj=0,1,...,v—2 (v=2) we consider the following differential

equations:
a(x)Pl(x) + b(x)P,(x) + ¢(x)Py(x) + D(x) + E(x) =0, j=0,
a(x) P,/ (x) +{d (x) + b(x)} P, (x) + {6 (x) + c(x) } P, (x)
+d(X)Py(x)+ D' (x) + E'(x) =0, j=1,

a(x) Py (x) + {ja (x) + b(x)} P/ (x)

(b (x) + eI (%)} P (x) + D) (x) Py(x)
DU(x)+ ED(x)=0, j=2,3,...,v—2.

+§ Siz)a“"“)(x)jt (Si1>b<“‘“>(x)+ <Js')c<“‘>(x)}P /
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Here, we write simply

AP ) PI(x) + AV () P(x) + A (x) Pa(x)
+Dx) + EVx) =0, j=0,

1 1 1
AV o) P (x) + AV () Pl (x) + 4V () Pl ()

+ 4y () Pa(x) + DU(x) + EVN(x) = 0, j =1,

A}[_JJ( )P}(,ljJrZ)( )+A[J] ]+1 +Z A )

+ D)+ EWN(x) =0, j=2,3,....v—2. (4.6)

Eq. (4.6) means the following differential equation.

Lemma 4.4 (Kasuga and Sakai [KaS1, Theorem 3.5]). Let v=2, and let Q satisfy the
condition C(v+ 1). Then for j = 0,1, ...,v — 2 we have the following equations:

; ) ; J
Bl ()P (x) + B () P () + > B ()P (x) = 0,

where, for xi, #0,
Bj[ilz(xk,,) = A, (Xpn) ~n/ay,
|Bj[~jH (Xkn |<CM*(Q7 xkn)(n/an)

1B (x| < Clf il 2447
+{n/an) " lxal}], s =0,1,...,). (4.7)
For any odd integer n and x;, = 0 we have

B (0) = {1+2r/(j +2)} 4, (0) ~n/ay, B (0)|<Clnfay)’,

B0 CHO n a0 )

< CH /™), s=0,1,...,].

Lemma 4.5. Let M;(Q;x) be defined by (4.1). For (1/¢)(a,/n)<|xw|<ea, and n
large enough we see

M (Q; xi) <&*(n/ay), & = max(s,sA’I). (4.8)

Proof. By Levin and Lubinsky [LL2, Lemma 5.1(5.3)], we have Q'(ea,)<e&'~'n/ay,
where A is the constant in (0.1). Therefore, we obtain (4.8). [



22 T. Kasuga, R. Sakai | Journal of Approximation Theory 127 (2004) 1-38

After this we write ¢ = ¢* simply. We need Lemma 4.1 again. Let j =1,2,...,v
Then, for x;,#0 and k = 1,2, ...,n,

|P;<1j)(xkn)| < CM;(xkn)l_<j> (”/an)'j_2+< » |P;(xk,,)|, (4.9)

where C is independent of k and n.
We use Theorem 3.1. Let r = 1,2, ...,v — 1. Then for xy, #0,

(1) (k) | < CM () 77 (mf ) =<7 (4.10)

for k =1,2,...,n, where C is independent of k and n.
By Theorem 3.3 we see the following. Let Q satisfy the condition C(v + 1). For
i=1,2,...,v—1,

eo(viksm) =1, ei(v,k,n) < C{M;(Q; x0) } 7 (n/a,)™ 7. (4.11)
Lemma 4.6. We have an expression
Au(xpn) = ou(k)(n/ay), k=1,2,....n, (4.12)

where o,(k) satisfies D) <a,(k)< D; for positive constants Dy, D, independing of n and
k. Furthermore, for j =0,1,...,v,

B, (x1) = eta(K) (n/a),

|BJ['j (Xkn)| = (b,,/b,,,l)ozf[(k)ocn,l(k)(n/a,1)3{l + &n (3 Xkn) } (4.13)
where there exists C>0 such that
len(J; Xkn)| < Ce. (4.14)

(xpn) = AV, (k) = Au(xn), the

[/]
Proof. By Lemma 4.3 we have (4.12). From B!/ [a

j+2
first equation in (4.13) is satisfied. By Lemma 4.4 we sce that /[ (Xxn) has the
expression

. . 6
: j
B (xin) = (2>a”(xk,,)+( ) (Xkn) + > €i(Xkn) + (1) an)* /| Xkl
i=

1
an?éo- (415)

Here, by (4.3) and (4.5) we see
a(x) = An(x)7 b(x) = _Q/(X)An(x) - A;(.X),
c(x) = c1(x) + e2(x) + e3(x) + ca(x) + es(x) + ¢6(x),

but if n is odd, then we omit cg.
First, we deal with the main term ¢;(x,). From (4.3) and (4.5) we see

(6] (xkn) = (bn/bnfl )Afl (xkn)Anfl (xkn)
= (bn/bn-1 )“i (k)otn—1 (k) (n/an)3{1 + &, (J; Xkn) }-
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By Kasuga and Sakai [KaS1, Proof of Theorem 3.4] we see the following:

" (i) | < Cnfay), b (xia)| < C(1? [ ary),

|2 (v | < Ce(nfan)’, o3 (o) | < Ce¥(nfan)?,
lea (o) [ C(r? fay), es(xim)| < Ce ([ ay),
e (X)) | S C(?/a3)  (let ¢ = 0 if n is even).

Noting (4.15), for n large enough, we have (4.14)
|8n(j§ xkn)| < Ce.

Therefore, the proof of Lemma 4.6 is complete. [

Remark 4.7. For Q(x) = |x[*",m = 1,2,3, ..., we have the following.

2m —2
an(k) = 0,(Q) = 2m(4m1)/2m< m 1 )[32/1117
m —

where f is the Freud’s constant (see [KS1]).

Using the above Lemma 4.6, we can estimate the lower bound for PS,ZHI)(x/m),

25 + 1 <.

Lemma 48. Let s=1,2,....,(v—1)/2, O0<e  (small  enough), and
(1/e)(an/n) < |xpn| <eay. If we set

PP () = (= 1) B (k) () an) ™ {1+ G55 Xkn) } P (Xen),

Bu(k) = (b /bn—1)otn(K)oty—1 (K), (4.16)
then for n large enough,
18 (83 Xien) | < C, (4.17)

where C is independent of n, xi, and ¢, and may depend on s and Q.

Remark 4.9. From b,~b, | we sce that there exist positive constants Cj, C;
independent of n and k such that

C<B,(k)<Cs. (4.18)

Proof of Lemma 4.8. Let j =0,1, ...,v. First, by (4.7) we note that
1B (i) = Cn/a), (4.19)

B (k)| < Celn /), (4.20)

B (xin) | < Ce {0 /@) + (nfan)' ™}, s =1,2,.0,j— 1 (421)
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for (1/¢)(an/n) <|xin| <ean, where C is independent of n, k and ¢, and may depend
on j and Q(x). By (4.8) and (4.9),

PS/) (Xrn) < Ce' =</ (n/an)j_l |P:1(xkn)‘a J=12, . (4.22)

for (1/¢)(an/n)<|xkn| <ea,, where C is independent of n, k and ¢. By (4.13) and
(4.14) we see that for j =0,1,...,v

— B (%) / By (k)
= (—l)ﬁn(k)(n/an)z{l + 0,(J5s Xkn) }5 100 (T Xk )| < Ce, (4.23)

for (1/¢)(ay/n) <|xXin| <ean, where C is independent of n, k and e.
Now, we show (4.16) and (4.17) by induction on s. Let s = 1. It follows from
Lemma 4.4 that

PO (i) = — {BY (x1n) / BY) (k) } P2 (Xk)
— {B (k) / BY (X1n) } P (k).

By (4.18), (4.19) and (4.21), the first term on the right-hand side of the above equality

is bounded by Csz(n/an)z\P; (Xxn)|- The second term is estimated by (4.22). These
lead to (4.16), (4.17) with s =1

P (xtr) = {(=1)Bu (k) (1 + pr) + Cellan/m)} (1 an)* P (1)
= (=B (R) (1 + Ca(13 60 1/ )P (¥tr) 115 0) | < C

for ¢ small enough and n large enough.
We suppose (4.16) and (4.17) until s — 1(>1) holds. From the expression of

Lemma 4.4 it follows that
PP = — (Byg/Bagi1) PP — (Bag_1/Boss1) P&V

n

— (Bay—2/Bagi1) P — - — (By/Bays1) P, (4.24)

n

where B; and P/ stand for Bj[z‘y_l](xk,,) and Pg'/)(xkn), respectively. By the

assumption of induction and (4.22), we see that the second term on the right-hand
side of (4.23) has an estimate

— (Bas—1/Bast1 )P’(12371) (Xkn)
= (=D, () (n/an)* {1 + p, (25 = L xe) (= 1) B (k) (/)
X A1+ Gu(s — 15 o0kn) } P, (o0kn)
= (B0 1+ 9}(25+ 15 30) P (),
where
or(2s + 15 Xkn)
= pn(25 — L0kn) + (s = 13 X0n) + P (28 — 1 x000) G (s — 15 k).
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Then we have |p],(2s + 1; x4,)| < Ce. Combining (4.18)—(4.21), we easily see that the
other terms on the right-hand side of (4.23) are bounded by C(n/a,)™(e*+

a,?)|P. (Xkn)|- Now, if we take n large enough as a,'<e, then we obtain (4.16)
and (4.17)

PO () = (=1 B2 () (/@) {1 + (55 %0) } Pl (Xkn),
|5 (1; X )| < C,

where £, (85 Xkn) = pl,(25 + 1; xp0) (83 Xpn). O
We need more refined estimate of (l,‘(’n)(m(xk,,). Let ¢j(1):(2j+1)71,

j=0,1,2,... . Let 0<e<1, and suppose (1/¢)(a,/n)<|xi|<ea,. From xi, #0,
we see

lin(x) = P () /{(x = Xin) Py (Xin) }

={1/P(xia)} D AP (xtn) /1) (= x10)"
i=1

So we have

12 (xkn) = P () (2 + 1) P ()}

Therefore, from this and Lemma 4.8, we have

1) () = (= 1), (1B (K) (/) {1+ Lo(1, 5 Xam) },
|Cn(1,j;an)|<C8, j:0717"'av7 (425)

where (,(1,/; Xkn) = ((J; Xkn) or j=1, (,(1,0;x8,) = 0, and C is independent of n,
Xr, and ¢, and may depend on j and Q. By induction on v, we can estimate

() ().

Lemma 4.10 (Cf. Kasuga and Sakai [KS1, Lemma 10]). Let 0<e<1, and suppose
(1/e)(an/n) <|xiu| <ean. Then, for v=1,2,3, ..., there exists uniquely a sequence

{qji(v)}f;o of positive numbers and (,,(v,J; Xk,) such that

)P (o) = (= 1) ;0B (K) (/@) {1+ (v, x0n) ),
IC(v,J; X)) | < Ce, j=0,1,...,v, (4.26)

where C is independent of n, X, and ¢, and may depend on v, j and Q.



26 T. Kasuga, R. Sakai | Journal of Approximation Theory 127 (2004) 1-38

Proof. The case of v =1 follows from (4.24). Suppose that for the case of v — 1 the
lemma holds. We have

2
o) = 3 (V) i )
i=0
=S ( D) st )
r=0

- 2~] V— r— 2j—2r+1
+ Z < r >(lknl)(2 Y ()l ()

It follows from (4.8) and (4.10) that
|G)® D (o) | < Cenfan) ™!, 1=1,23, ...,

therefore, the second sum on the right-hand side of the above equality is bounded by
Cs(n/a,,)zz. By (4.20) and the assumption of induction, the first sum Zi’/:o is
estimated as

S = ()0l BRI+ L)

r=0 r=0
(1), (V)BT (k) (/@)™ {1+ (1, = 133 }

=3 -2 ) 2) 000 Dl

X {1 + Tﬂ(vaja V; an)},

X

where

Tu(V,), 15 Xkn) = 6 (v = 1,5 Xw) + Ca (1, — 75 Xkn)
+ Cn( >]7xkn)Cn( - xkn)

|‘L'n(V,j7 r xkn)‘ < Ce.

If we put, for j =0,1,2,

/ . 2
V) = 1/(2j—2r+1 Lv—=1),
=3 /-2 iy Jatr-

i) = 3 (/@ =20 0) ()00 = D). @27

r=0

then {¢;(v)}Zy and {{,(v,/, 75 xk)} 2, satisfy the required conditions (4.25). [
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We rewrite relation (4.26) in the form

b)) =1, v=1,2,3,...,

j—1
$:(v) — (v —1) ={1/(2 +1 }Z(zj+1> o,
J=123 ..., v=234 ...

Now, for every j we will introduce an auxiliary polynomial determined by {¢;(v)},2,
as the following lemma.

Lemma 4.11 (Kanjin and Sakai [KS1, Lemma 11]). (i) Forj=0,1,2, ..., there exists
a unique polynomial W;(y) of degree j such that ¥;(v) = ¢;(v), v=1,2,3, ... .
(i) o(y) =1, and ¥;(0) =0,/ =1,2,3, ... .

Since ¥;(y) is a polynomial of degree j, we can replace ¢;(v) in (4.27) with ¥;(y),
that is,

j .
70) =3 /@ -2+ D} )y 1, J=01.2 (428)
r=0

for an arbitrary y andj = 0, 1,2, ... . We use the notation F,(x,y) = {l,(x)}’ which
coincides with 7}, (x) if y is an integer. Since /i, (xxs) = 1, we have Fi,(x, 1) >0 for x in
a neighbourhood of xg, and an arbitrary real number y.

We will show that (6/6x)‘iFk,1(xkn,y) is a polynomial of degree at most j with
respect to y for j =0, 1,2, ..., where (9/0x)” Fi(Xtu, y) is the jth partial derivative of
Fi,(x,y) with respect to x at (xx,,y). We prove these facts by induction on j. For

= 0 it is trivial. Suppose that it holds for j>0. To simplify the notation, let F(x) =
Fin(x,y) and /(x) = l,(x) for a fixed y. Then F'(x)/(x) = y/'(x)F(x). By Leibniz’s
rule, we easily see that

Jj—1
F(j+1 1 ( ) s+1 )l(jfs) (xkn)
s=0

+J/i<s) 19D (o) FY™) (k)

s

which shows that FU/+1)(x;,) is a polynomial of degree at most j 4 1 with respect
to y.

Let P//(y) be defined by
(8/0x)Y Fin(xtny ¥) = (=) B (k) (n/an)? ¥,(») + PL(), j=0,1,2,... .

Then P%] (y) is a polynomial of degree at most 2j. We have the following.
By Lemma 4.10 we have the following.
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Lemma 4.12 (Kanjin and Sakai [KS1, Lemma 12]). Letj=0,1,2, ..., and let M be a
positive constant. If (1/¢)(an/n) <|xk| <ean, 0<e (small enough), and |y|< M, then,
() 1(0/09)" Py ()| < Celn/an)?, s = 0.1,
and
(ii) 1(0/0)”" F(xtn, )| < Co(nfan) V",
where C is independent of n, k and &, and may depend on j, M and Q.

By (i) of the above Lemma 4.12, we can prove the following lemma which plays an
essential role in estimating the lower bound of e,_i(v, k,n).

Lemma 4.13 (Cf. Kanjin and Sakai [KS1, Lemma 13]). If'y<O0, then ¥;(y)#0 for
J=0,1,2,

Proof. Since ¥o(y) =1, we may assume j>1. Since ¥;(0) =0, ¥;(y) has an
expression

] iy A
=> (=D a()y, =123, ... (4.30)
i1
Then it is enough to show that ¢;(j)>0, j=1,2,3,... . Because if y = —u, u>0,
then ¥;(—u) = (—1)/31, ei(j)u' #0.
We will first show that ¢;(;)>0, j=1,2,3,... . It follows from (4.25) and

(=1 e1(j) = (d/dy) ¥;(0) that
—B(k) (n/an)? er () = (d/dy){(0/0x)Y Fin(xtn, ¥) — P} g
(see (4.29)). We have
(d/dy){(2/0x)” Fu(xtn, )}, = (d/dx)?{(2/09) Fin(x,0)}_
= (d/dx)? log{llin(x)|},—.,,
== (=D {1/ (% — X))

s#k
Here, we used the expression i, (x) = P, (x)/{(x — Xxn) P}, (xxn) }. Therefore, we have
c1(j) = B () (n/an) ¥ | (2 = DU D" {1/ (i = X)) + (d/dy) PL(0) |
s#k

From Lemma 4.12(i) it follows that \(d/dy) ( )| < Ce(n/ay,)¥ for a certain number
kas (1/¢)(n/a,) <|xku| <eay,, where C is a posmve constant independent of n. From
this and Xx_1, — Xg41,,~ (n/a,) (see [KaS1, Theorem 1.4]), we have

c1(j)= B, (k) (n/an) 7{C(2j — Di(n/a,)? — Ce(n/a)?}
> {C(2j - 1)'B,7 (k) — Ce}.

Letting ¢ — 0, we see that ¢;(j)>0.
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Next, we treat the other coefficients. We see that
21 (2542
(1)) ()

J+1

2J+2 . (222
—Z( ) () 7 Coten) (U) ™27 (k)

j+1 2
]+2 L r— j+3—-2r
() e )P ) n= 1,25
r=1

From (4.295), it follows that the leading term on the left-hand side of the equation is
(=171 2B (K) (/@)D

The leading term of the first sum on the right-hand side is

Jtl j . . .
Z(zj y 2)(1>f“<z>,.<u>¢j+1,.<u>ﬁ4“<k><n/an>2“+”.

= 2r
Since |(#)* Y ()| < Ce(n/a,)* ", t = 1,2, ... . Therefore, we have
Ly
j + 2
by =3 ( 7 )80
r=0

as ¢—0, and therefore,

/(2 +2
¢j+l (2#) - 2¢)j+l (:u') = Z( ]2—1: >¢F(H)¢j+ll‘(u)7 n= 1727 37 cee o

This leads to

I 2/ +2
7y 29) = 2050100 = 30 (72 ) 200700 (431)
r=1
We replace
Jt+! o A
Vi) =Y (=17 + 1y

By (4.31) we have

J+1 J
S (=DM =)+ 1 =Z<2j+2) ) ¥1-0 ()

i=1 r=1

If we assume ¢;(j)>0, i=1,2,...,j, then we see that the right-hand side of the
equation is a polynomial of degree j+ 1, whose coefficients are alternating.
Therefore, we have (2' — 2)¢;(j + 1) >0, which implies ¢;(j +1)>0,i=2,...,j + .
This completes the proof since we have already obtained ¢;(j)>0,
j=1273 ... O
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Proof of Theorem 3.6. Let 0<¢ (small enough). Forv =1,2,3, ..., we define ,,(v;s)
by (1.1), that is

exs(v.k,n) = (=1){1/(29)3 ¥, (=) By, (k) (/) {1 + 0y (v: 9)}-

Then, we will show |i,(v;s)|<Ce for k and (1/¢)(a,/n)<|xim|<ea, and s =
0,1,2,...,(v—=1)/2, where C is independent of n, k and ¢, and may depend on v, s
and Q.

We prove (3.1) and (3.2) by induction on s. By the definition of /,(v; x), we have

eo(v,k,n) =1,
Jj—1
ej(v,k,n) = — (1/j") Z
r=0
x e (v ke, ) (VY (), j=1,2, v — 1. (4.32)
By eo(v,k,n) =1 and Po(y) =1, (3.1) holds for s =0. From (4.32), we write
exs(v, k,n) in the form
625(\),](,7’1)

s—1

= {1/ | D_{(29)!/(2s = 20)Fear (v e, m) (11,) > (k)

r=0

+ Z{(2s)!/(2s —2r 4+ Dea_1 (v, ke, n) ()72 () |
r=1
We have |(1})* 2 (x)| < Ce(n/a,)* > by (4.8), (4.10) and ez 1 (v, k,n)|
<Ce(n/a,)” " (see (4.8) and (4.11)). The second sum Y%, is bounded by

Ce2(n/a,)®. For the first sum Zf;(]) we have the following. By (3.1), (3.2) and
Lemma 4.10,

1 S—

=D (=1){(29)1/2s = 20)1H{1/ )} ¥ (=) B (k) (@)

7

X1+ ) 1) 0B )
X {1 + Ckn(v,s - T, an>}

S

i
o
Il
o

s—1
— (B fa) Y ( 23) Wo(—0)by, () (1 + Zanlr,5)),

= 2r

where A, (r,8) = Ny (W, F) + Cn (v, 8 = 7y X)) + L (v, 8 — 7y Xpen ) g (v, 7). We set

halv.) =S (50 ) #9000 a(9),

= 2r
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then by |4 (r,s)|<Ce we see |n,(v,s)|<Ce. Therefore, by Lemma 4.10 and the
assumption of induction, it is enough to show

s /2
Z( S)y/,(—v)@_,‘(v):o, s=1,23 . v=123 ...

r=0 2r

Let C(») =30 (3)) ¥, (—») ¥s_(»). It suffices to show that Cy(v)=0,s =1,2,3, ...,

v=1,2,3,... . We have
0= (I ™) (xia) §2Sj(2s><zl><")< ™ (i)
— Xin) = Xien Xkn
kn k - i kn kn)tin ki

s 2S ) o
=y (8/0X) Fin (s, — )12 (3)
—\2r

- 2S 2r+1 25—2r—1
+ r:0 (2}, +1 )(a/ax) r+ Fkn(xkn; _1)11(01 )(xkn)

for every s. By (4.25), (4.28) and Lemma 4.12(i), we see that the first sum ) ,_, has
the form

> = B/ 3 (5 )11 1)+ G/,

r=0 r=0 2r

where |£,|< Ce. By (4.10) and Lemma 4.12(ii), the second sum Z‘;;(l) is bounded by
Ce(n/ay)®. Therefore, letting ¢—0, we see that

0= z;(zj) Y~ (1) = Go(1)

for every s. Suppose C;(v) = 0 for every s. We will show that Cy(v + 1) = 0 for every
s. Using (4.27) and changing the order of summation, we have

Ci(v+1)

AN lp (1/Q2s—2r—2p + 1)}(23 N 2’) <2S) W, (—v— 1)| ¥, ().
=0 | /=0 2p 2r
By the relation (252; 2’) (gj) = (g;) (232’,.2") and (4.27), we have
L 2s — 2r 2s
; {1/(2s = 2r—2p + 1)}( 2 ) <2r)qf,,(_v —-1)

()i
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with leading to Cs(v + 1) = Cs(—v). Since we easily see Cy(—v) = Cs(v), we finish
proving. The positiveness (—l)jEF’j(—v)>07 j=0,1,2,...,v=1,2,3, ..., are easily
obtained by (4.30). O

5. Applications

In this section we report some interesting applications of results in the previous
sections. We suppose again »>0 in (0.3). We define the moduli of continuity of
feC(R) by

o(f,la,bl;h) = max [f(x1) =/ ()], >0

|x1=x2|<h, x1,x2€[a,b]
and

o(f,R;h) = max [f(x1) = f(x2)], h>0.

|x1—=x2|<h, x1,x2€R

Theorem 5.1. Let Q satisfy the condition C(v), and let v=1,2.3,... . If fe C(R) is
uniformly continuous function on R, then we have

sup Wo(x)(1-+ )| (v./5) = £ (x)]

<Clog(l +n)o(f,R;a,/n),
where

sup  uQ'(u)/Ou) =ng, No<n.
O<u< o
Remark 5.2. If lim,_ log(l +n)w(f,R;a,/n) =0 (for example, feLip,(R) =
{/51/(x+h) = f ()< CIA["}), then
lim sup 1, (x) (1 + |x) "I L, (v,£3%) =/ (x)] = 0.
xeR

n— oo

Theorem 5.3 (Cf. Kanjin and Sakai [KS1]). Let v=1 be an odd integer, and let Q
satisfy the condition C(v + 1). Then there is a function f '€ C(R) such that for any fixed
constant M >0,

lim sup max |L,(v,f5x)| = 0.

n— oo —M<x<

Theorem 5.4 (Cf. Kanjin and Sakai [KS2]). Let Q satisfy the condition C(v), and let I
be any compact interval.

() Letv—1=1,and N>1. If f e CNV)(R) satisfies

lim oo (™), R; h)log(h) = 0,

then we have

lim max W, (x)|Ly) (v = 1,v.f3x) =V (x)[ =0, 0<j<N{1—(1/(v+2))}.

n—o Xxe
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(i) Let v —1>1. If f e CD(R) satisfies
lim o> (), R; h)log(h) =0,

then we have

lim max W)o(x)|LL (1 v.f3x) = V()] =0, 0<j<I{1=(1/(v+2))}.

n— oo

We will show only Theorem 5.1. The proofs of other theorems are completed by
the same line of proofs as [KS1] or [KS2].

Lemma 5.5. Let v=2, and let f'e C(R) be uniformly continuous on R. Then we have

W) f ()< Calf Rian/n),  |x[=ay.
Proof. First, we show that eréz (x)|.f(x)| is bounded on R. In fact, if it is not true,
then we see that there exists a sequence {xy b, 0<X] <X2 <X3< ..., X1 — X, =1,
such that WrIQ/Z(xk)|f(xk)| = u(xx)> 1. For simplicity, we suppose that f(x;) >0. We
may consider that p(xy) is increasing, then

S Got) =S () = (e Wi (k) = w0 Wi ()
> () { Wy (xicer) = Wip " (x0)}-
Since f(x) is continuous, we see that for any fixed 4, 0 </ <1 there exists a sequence
{xx(h)}Z, such that x; <xi(h) and
{f Cer(h) + h) = f Cac(h) } [h = {f (xier) =S (o) }/ (i1 = xi)
> (1) { W (k1) = Wig (i)} (ieer = i)
> C(W,o") (),

rQ

where C is a positive constant. Here, for k large enough we have 5( W,,bl/z)'(xk) =1.

Then we see f(xx(h) + h) — f(xx(h)) = C, where C is a positive constant independent
of h. But for 4 small enough this contradicts the uniformly continuity.
Now, since Q(a,)~n (see [LL2, Lemma 5.2]), we have for |x|>a,

W) £ ()| < CW, 5 (an) < Can/n< Cof, R afn). O

Lemma 5.6. Let feC(R) be uniformly continuous on R. Then there exists a
polynomial Pell, such that for xeR we have

/(%) = P)| Wp(x) < Cor( /3 R, /), (5.1)

|PY)(x)| Wy (x) < Cin/an) o (3R, an/n), j=0,1,2,..., (5.2)

where W,pu2, is defined in (2.1), and C, C; are constants.
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Proof. By Teljakovskii [Te] we have the following. For ge C[—1, 1], there exists
T(x)ell, such that

l9(2) — T(H)|< Co([~1,1],9: (1 — ) /m),
(1= )" (1)| < Cnoo([-1,1), g (1 — ) /m),

where w([—1, 1], g; h) is the modulus of continuity for g on [—1, 1]. Therefore, we see
that for |x|<Da,, D>1

|/ (x) = P(x)|< Ca(f;[=2Day, 2Day], 2Day /n)
< Co(f;R,an/n) (5.3)
|P'(x)|< C(n/ay)o(f;|-2Day, 2Day),2Day /n)
< C(n/an)o(f;R,an/n). (5.4)
For |x| < Da, we see that | P(x)| erQ/z(x) is bounded. Because from (5.3) and Proof of
Lemma 5.5
PE)W,g" ()| < CLS) WG () + o /R an )W, ()} < C.

Therefore, by the infinite—finite range inequality [KaS1, Theorem 1.1] we have, for
|x| = Da,,

PO, ()< CIPW |1, (<0 < C-
So for |x| = Da, we have

|P(x)| W, (x) < CW)y ' (Da,) < Cor( f3R, ay/n). (5.5)
Consequently, we have, by (5.3), (5.5) and Lemma 5.5,

[f(x) = P(x)| Wi (x) < Co(f;R,an/n),  x€R,

that is we obtain (5.1).
We have to show (5.2). By (5.4) and the infinite—finite range inequality we have, for
|x| = Day,,

[P'(0)[Wio(x) < CIIPWollL, x<ay < C/an)o(fiR, an/n).
So, noting (5.4) for xeR,
|P’(x)|Wr"Q(x)éC(n/a,,)w(f;R,an/n). (5.6)

Consequently, repeating of the Markov inequality (Theorem 2.1), the inequality (5.6)
means

[P )W) < [PV Wl wy
Cj(n/an)jw(f;R,an/n), j:0,1,2,...,

so (5.2) is shown. Consequently, the lemma is complete. [

Definition 5.7. We define ®,(x) = max{n=2/3,1 — |x|/a,}"/*.
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We note that for some positive constants C,
CWoo(x)<(1+ |x)) "< Cp! (x)< C. (5.7)

In fact, the first inequality is easy to show. For the second inequality if x<(1/2)ay,
then it is trivial, and if (1/2)a,<x, then we see (14 |x|)"°<Ca,"*
<Cn Vo<, (x).

Lemma 5.8. We write some basic results.
(1) If n is odd, then we have

1Py 1(0)[~(n/ay) a ;1/2

|P.(0)|~ (n/a,) na,*? [KaSl, Theorem 1.9](i).
(i1) Uniformly for 2<j<n, n=2,3,4, ..., we have
Can/n<Xj—1 0 — Xpn,
especially for |Xju|,|Xj—1 »| <na,, 0<n<1, we see

Xj—1p — Xjn~ay/n  [KaSl, Theorem 1.10].

Sketch of proof for Theorem 5.1. We recall the definitions of Hermite—Fejér
interpolation polynomials. For /'€ C(R) we define

7f X Zf xkn hkn V X)

and define for fe CC~D(R),

n.ov—

Ln(v - 13 va; X) = f<s> (xkn)hskn(v - 17 Vi x)~

=1

=
Il
o

Let f'e C(R), and let PeIl, satisfy inequalities (5.1) and (5.2).
W) (1 + [x)) "1 £ (x) = Lu(v.f; )]
< W) (1+ )" £ (x) = Px)| + |La(v,f = P )|

n

v—1
+ 30 ST PY () (v — 1,v50)[ .

k=1 s=1
S Wip(x) (14 |x) ™1 f (%) = P+ Wip(x) (1 + |x)) ™"

Z "0 (Xkn)| S (Xkn) — P(xpen) | WV, 0 ) (k) | i (V5 X) |
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n v—1
+ Wil )00 3 1P ) (= 135
k=1 s=

Ccu(f,R,a,,/n)(l + |x|)—W1/6{ Z xkn |hkn Vi X)|}
P (1 +[x) ™y z_: | P (ot |t (v = 1, v; ). (5-8)
k=1 s=1

We estimate the Lebesgue constant

(1 + |x]) ‘"/"Z W, (Xton) en (v; )] (5.9)
and the sum
6 n v—1
W) (14 x) 0SS PO ety — 1,vi0)] (5.10)
k=1 s=1

First, we estimate (5.9). We use Lemmas 1.5(a),(d),(e), 5.8, Corollary 3.4 and (5.7).

Wio(x)(1+ X)) ™" [ (v )]

k=1
WrQ(x)an(x)Pn(x) !
S x;() (x = Xkn) W0 (Xicn) P (Xin)
v—1
X Z lei(v, ke, m) (x — xp)'|
i=0
3 g (s (3) ()
Xin %0 (X xkn)¢ (xkn) WrQ (xkn)P;, (xkn)
-1
Z (v, k,n)(x — x,)'|  (note (5.7))
i=0
< D (1/j(x,k))
Xpn #0
< Clog(l + n), (5.11)

where

|x — Xpu| ~j(x, k)a, /n.



T. Kasuga, R. Sakai | Journal of Approximation Theory 127 (2004) 1-38 37

Next, we estimate (5.10). By above method and (5.2), we see

n v—1
P (L4 )™M S ™S |PY (o)l gin (v = 1,95 )|
k=1 s=

n

v—1
2o (L4 )™M S ™S [P (o) W (k) | W (k)
k=1

s=1
X hgen(v = 1,v; x)|

v—1 v—1

Z Z Z (n/a,)’o(f;R,a,/n)

X #0 s=1 i=s
W"Q(x)©n(x)Pn(x)

(X = Xten) Wro (Xkn) P, (Xten)
o(f;R,ay/n)
X . YQ( X) Py (x) Py (x)

Z Z 2 [ )2, (o) Weglen P

|/ an)’ (0 an) > (x = i

<Co(fiRan/n) Y (1/j(x,k))

Xk,,io
< Clog(l +n)w(f;R,a,/n) (5.12)

for n large enough.
Consequently, by (5.8), (5.11) and (5.12) the proof of the theorem is complete. [

lesi(v, k,n)(x — xk,,)[\
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